Abstract:
Mass analysers and methods of ion detection for a mass analyser are provided. An electrostatic field generator provides an electrostatic field causing ion packets to oscillate along a direction. A pulse transient signal is detected over a time duration that is significantly shorter than a period of the ion oscillation or using pulse detection electrodes having a width that is significantly smaller than a span of ion harmonic motion. A harmonic transient signal is also detected. Ion intensity with respect to mass-to-charge ratio is then identified based on the pulse transient signal and the harmonic transient signal.
Abstract:
Electrostatic trap mass spectrometers are disclosed that may comprise at least two parallel sets of electrodes separated by a field-free space, wherein said at least two parallel electrode sets extend along a curved Z-direction locally orthogonal to said X-Y plane such that each of said two electrode sets define a volume with a two-dimensional electrostatic field in an X-Y plane and define either planar or torroidal field regions; means for adjusting the torroidal field regions to provide both (i) stable trapping of ions passing between said fields within said X-Y plane and (ii) isochronous repetitive ion oscillations within said X-Y plane such that the stable ion motion does not require any orbital or side motion; and an ion bounding means in the curved Z-direction configured to compensate time-of-flight distortions at Z-edges of the trap.
Abstract:
A method, apparatus and algorithms are disclosed for operating an open electrostatic trap (E-trap) or a multi-pass TOF mass spectrometer with an extended flight path. A string of start pulses with non equal time intervals is employed for triggering ion packet injection into the analyzer, a long spectrum is acquired to accept ions from the entire string and a true spectrum is reconstructed by eliminating or accounting overlapping signals at the data analysis stage while using logical analysis of peak groups. The method is particularly useful for tandem mass spectrometry wherein spectra are sparse. The method improves the duty cycle, the dynamic range and the space charge throughput of the analyzer and of the detector, so as the response time of the E-trap analyzer. It allows flight extension without degrading E-trap sensitivity.
Abstract:
An ion mobility spectrometer is described having an ion filter in the form of at least one ion channel having a plurality of electrodes. A time-varying electric potential applied to the conductive layers allows the filler to selectively admit ion species. The electric potential has a drive and a transverse component, and in preferred embodiments each of the electrodes is involved in generating a component of both the drive and transverse fields. The device may be used without a drift gas flow. Microfabrication techniques are described for producing microscale spectrometers, as are various uses of the spectrometer.
Abstract:
The mass spectrometer is characterized in that a linear ion trap, that consists of electrodes for mass-selective discharge, is provided with a mechanism that excites ions in a first direction that is perpendicular to the rod axes and a mechanism that simultaneously generates an electric field on the axes in a second direction that is perpendicular to the axial direction and the first direction in order to generate an electric field on the central axis. Highly efficient, high-speed scanning can be achieved using this configuration.
Abstract:
The present invention provides a mass spectrometer including an ion source for generating pre-cursor ions, ion fragmentation means for generating fragment ions from the pre-cursor ions, a reflectron for focusing the kinetic energy distribution of the ions, and an ion detector wherein the mass spectrometer also includes axial spatial distribution focusing means which in use acts on the ions after the ion fragmentation means and before the reflectron, the axial spatial distribution focusing means being operable to reduce the spatial distribution of the ions in the direction of the ion optical axis of the spectrometer. Suitably the axial spatial distribution focusing means comprising a cell with two electrodes 52, 54 which may be apertures or high transmission grids. A pulsed electrostatic field is generated by applying a high voltage pulse 60 to the first electrode 52 at the time when the pre-cursor ions of interest 56, 58 have just passed into the pulser 50. The second electrode 54 is maintained at 0V during this time.
Abstract:
The TOF mass spectrometer disclosed places an even number of ion mirrors in close proximity to a MALDI ion source and a field-free drift space between the exit from the mirrors and an ion detector. This “reversed geometry” configuration may be distinguished from a conventional reflecting TOF analyzer employing a single ion mirror where a large fraction of the total drift space is located between the ion source and the mirror.
Abstract:
The present invention provides a time-of-flight (TOF) mass analyzer. The system includes an analyzer vacuum housing isolated from the evacuated ion source vacuum housing by a gate valve maintained at ground potential. A pulsed ion source is located within the ion source housing, and the gate valve is located in a first field-free region at ground potential. A second field-free drift space within the analyzer housing is biased at high voltage with opposite polarity to the voltage applied to the pulsed ion source. Novel ion detectors are provided with input surfaces in electrical contact with the second field-free drift space with output connected to an external digitizer at ground potential.
Abstract:
This invention relates to a method and apparatus for separation of rare stable or radioactive isotopes from their atomic or molecular isobars in mass spectrometry (MS). In the present invention, the approach taken to removing atomic isobars utilizes a high transmission device for decelerating ions in combination with low energy reactions, such as ion-molecule reactions or near resonant electron transfer, in RF ion guides. The isobar is selectively depleted by electron transfer or other reactions between negative ions and gaseous targets in pressurized RF ion guides at low energies. The energy is controlled in such a way as to prevent reaction of the ion of interest while inducing reactions with the undesired isobar interference. The technique is of particular relevance to accelerator mass spectrometry (AMS) for which it allows substantial reductions in the necessary terminal voltage. The effect is to allow reductions in the size and cost of AMS installations.
Abstract:
In a quadrupole mass spectrometer which measures partial pressure strength according to a gas type in a vacuum system from ion current intensity, a quadrupole mass spectrometer with a total pressure measurement electrode has a total pressure measurement electrode for examining an ion density disposed in a demarcation space which is comprised of a grid electrode and an ion focusing electrode. And, a vacuum system is provided with only the quadrupole mass spectrometer which measures partial pressure strength according to a gas type in the vacuum system from an ion current intensity and does not have an ionization vacuum gauge other than the quadrupole mass spectrometer.