Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber and an optical system for collecting plasma radiation.
Abstract:
An ultraviolet (UV) germicidal or sterilization fixture having a dual parabolic reflecting assembly for collimating and redirecting UV light. The first pair of parabolic reflectors are positioned to collimate and reflect light emanating from the sides of the UV light source and spaced apart proximately to the rear surface of the UV source to allow light to pass through. The second pair of reflectors are positioned behind the first pair and aligned to capture light passing through the gap formed by the first pair of reflectors and then collimate and redirect the light produced by the rear of the light source out of the front of the fixture.
Abstract:
A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with a thickness that is varied to compensate for optical aberrations in the system.
Abstract:
A wafer inspection system includes a laser sustained plasma (LSP) light source that generates light with sufficient radiance to enable bright field inspection. Reliability of the LSP light source is improved by introducing an amount of water into the bulb containing the gas mixture that generates the plasma. Radiation generated by the plasma includes substantial radiance in a wavelength range below approximately 190 nanometers that causes damage to the materials used to construct the bulb. The water vapor acts as an absorber of radiation generated by the plasma in the wavelength range that causes damage. In some examples, a predetermined amount of water is introduced into the bulb to provide sufficient absorption. In some other examples, the temperature of a portion of the bulb containing an amount of condensed water is regulate to produce the desired partial pressure of water in the bulb.
Abstract:
Known mercury-vapor discharge lamps for planar irradiation are provided with a lamp bulb made of quartz glass, which encloses a closed discharge space having a non-linear gas-discharge channel. In order to provide a structurally simple lamp, which also guarantees a highest possible homogeneity of the UV irradiation, even for a small distance to the surface to be treated, the lamp bulb is formed as a quartz-glass chamber defined by straight walls and having bottom, top, and side walls and is divided into sub-chambers by several separating webs made of quartz glass and projecting from the bottom wall to the top wall. These sub-chambers include a front-most sub-chamber and a rear-most sub-chamber and form in series interconnection the non-linear gas-discharge channel. The separating webs extend alternately from one side wall up to close to the opposite side wall, while leaving open a gap connecting adjacent sub-chambers in a fluid-communicating manner. One electrode is allocated to the front-most sub-chamber and the other electrode is allocated to the rear-most sub-chamber.
Abstract:
A lamp is operated with main and auxiliary amalgams. In accordance with one or more embodiments, a lamp includes an auxiliary amalgam-based material that releases mercury at an elevated temperature that is above an operating temperature of the lamp, and that absorbs mercury at temperatures below the elevated temperature. During a start-up period, the auxiliary amalgam-based material is heated to cause the material to release mercury for generating light in the lamp. After the start-up period, the auxiliary amalgam-based material is allowed to cool below the elevated temperature and absorb mercury, while the lamp continues to operate for generating light using a main amalgam.
Abstract:
A socketed high pressure gas discharge lamp having a lamp vessel comprising a space sealed by at least one seal. The discharge lamp further comprising a socket in which the lamp vessel is mounted with its seal and fixed with cement. A lamp axis extending through the socket and through the space of the lamp vessel. The socket is provided with at least one opening extending axially through the socket from its base side to its front side. The opening has an annular wall which is either formed only by the socket or by a combination of both the socket and the seal of the lamp vessel. Preferably, the opening is located on either side of the seal.
Abstract:
A UV lamp comprises: a bulb (2) containing a mixture of an inert gas and metallic halides; at least one first electrode (4) and one second (4) electrode associated with the bulb (2); a connector (6), coupled to the bulb (2) and having two thin metal plates (12a) protruding from a portion of said connector (6). Each flat thin plate (12a) is electrically connected to an electrode (4) and is spaced apart from the other thin plate (12a) by at least 20 mm.
Abstract:
A discharge lamp configured to suppress temperature increases in the electrode on the opening part side of a reflective mirror is described. The discharge lamp includes an F electrode and an R electrode having shapes before forming the melt electrodes that satisfy at least one of the following conditions (a) to (c): (a) The diameter of the core wire of the F electrode is d1f, and the diameter of the core wire of the R electrode is d1r, then d1f>1.2×d1r; (b) The wire diameter of the coil of said F electrode is d2f, and the wire diameter of the coil of the R electrode is d2r, then d2f>1.2×d2r; (c) the number of windings of the coil of the F electrode is nf, and the number of windings of the coil of the R electrode is nr, then nf>1.2×nr.
Abstract:
An electrodeless discharge lamp apparatus is provided which is increased in heat dissipation, making it possible to adapt to an increase in output of the apparatus. The electrodeless discharge lamp apparatus comprises a bulb containing a discharge gas and a coupler accommodated in a cavity formed in the bulb for generating a high frequency electromagnetic field. The coupler has: an induction coil; a core inserted into the coil; a heat conductor for conducting heat generated from the coil and the core; and a bobbin made of resin which accommodates the core and the heat conductor therein, and which has the coil wound therearound. The bobbin is designed to be separated in a radial direction of the coil, so that it is possible to separately mold the respective parts of the bobbin. Thus, it is not necessary to form, in the bobbin, a draft angle which has been necessary in the prior art when molding a tubular-shaped bobbin, and it is possible to make the thickness of the bobbin thin and uniform, so that the proportion of the bobbin in the volume of the cavity can be reduced to increase the proportion of the heat conductor.