Abstract:
Provided is a rotatable disc-shaped microfluidic device which can electrochemically detect electrolytes comprised in a specimen. The microfluidic device including: a specimen chamber which accommodates a specimen; a detection chamber which receives the specimen from the specimen chamber; and an ion sensor which is formed in the detection chamber to electrochemically detect electrolytes in the specimen and includes an indicator electrode, a standard electrode and an ion selective film formed on a portion of the indicator electrode. The standard specimen is accommodated in the detection chamber, and a standard potential is measured. Then, the specimen is accommodated in the detection chamber, and a measurement potential is obtained to detect the concentration of the electrolytes comprised in the specimen.
Abstract:
Provided is a rotatable disc-shaped microfluidic device which can electrochemically detect electrolytes comprised in a specimen. The microfluidic device including: a specimen chamber which accommodates a specimen; a detection chamber which receives the specimen from the specimen chamber; and an ion sensor which is formed in the detection chamber to electrochemically detect electrolytes in the specimen and includes an indicator electrode, a standard electrode and an ion selective film formed on a portion of the indicator electrode. The standard specimen is accommodated in the detection chamber, and a standard potential is measured. Then, the specimen is accommodated in the detection chamber, and a measurement potential is obtained to detect the concentration of the electrolytes comprised in the specimen.
Abstract:
Disclosed are an article for assaying a target, wherein the article includes a solid surface on which a first binding member, a blocking material, and a second binding member are immobilized, a method of manufacturing the article, and a method of detecting a target using the article.
Abstract:
A method of printing droplets using capillary electric charge concentration includes: providing a capillary nozzle comprising a back-end part and a front-end part disposed substantially opposite the back-end part; spacing a target member apart from the front-end part of the capillary nozzle at a predetermined distance; immersing the back-end part in a solution; and supplying a voltage to the solution. The back-end part transmits the solution to the front-end part.
Abstract:
Provided is a microfluidic device. The microfluidic device includes a sample chamber in which a sample is accommodated. The sample chamber includes: an introduction portion including a loading hole through which the sample is loaded; an accommodation portion including a discharge hole; and a neck portion forming a boundary between the introduction portion and the accommodation portion. The neck portion provides a capillary pressure for controlling flow of the sample between the introduction portion and the accommodation portion.
Abstract:
A device for printing a droplet onto a substrate includes: a droplet generating member which is needle-shaped and comprises a receiving portion disposed vertically to receive a solution, and a discharge hole connected to the receiving portion and formed on a bottom of the receiving portion so that the solution can be discharged from the receiving portion; a substrate disposed below the droplet generating member, the substrate includes a target portion to which the droplet discharged from the discharge hole of the droplet generating member is dropped and attached; a voltage applier applying a voltage to the droplet so that the droplet can be dropped onto the target portion of the substrate; a volume measuring unit measuring the volume of the droplet; and a droplet control unit maintaining the volume of the droplet at a predetermined level based on the measured volume of the droplet.
Abstract:
Provided is a centrifugal force based microfluidic system including: a microfluidic device including a rotatable platform and an optical path formed to extend horizontally in a straight line from a circumference of the platform; a motor rotating so as to control the microfluidic device; a light emitting unit emitting light towards the microfluidic device; a light receiving unit detecting the light emitted from the light emitting unit; and a controller determining a home position to be the position of the microfluidic device at a point of time when the light emitted from the light emitting unit is detected by the light receiving unit, wherein the light emitted from the light emitting unit passes through the optical path to be incident on the light receiving unit only when the microfluidic device is located in a predetermined position.
Abstract:
Disclosed is an apparatus and method for ejecting droplets using charge concentration and liquid bridge breakup. The droplet ejection apparatus includes a reservoir storing a liquid; a capillary nozzle having a lower end submerged in the liquid stored in the reservoir and an upper end exposed outside the surface of the liquid, the capillary nozzle transferring the liquid to the upper end using capillary force; a potentiostat for applying a voltage to the liquid; a substrate mount on which a substrate is disposed to face the upper end of the capillary nozzle; and a distance adjusting unit for reciprocatingly moving the substrate between first and second positions with respect to the capillary nozzle, wherein the first position denotes a position where a distance between the upper end of the capillary nozzle and the surface of the substrate is less than a effective distance.
Abstract:
Provided are a valve unit and a microfluidic device including the valve unit. The valve unit includes: a valve substance container containing a valve substance, the valve substance including a phase change material that is solid at ambient temperature and melts by absorbing energy; a valve connection path connecting the valve substance container to a channel forming a fluid passage; and a pair of drain chambers formed along the channel at both sides of the valve connection path.
Abstract:
A device and method for printing biomolecules on a substrate uses an electric charge concentration effect. The device overcomes limitations of the material and surface characteristics of a substrate, enables accurate dropping of a biomolecular droplet onto a target surface of the substrate, prevents electric discharge, and thus allows the manufacturing of a high density biochip by depositing numerous biomolecular droplets, which are small in size and volume, onto a substrate. The device includes: a needle-shaped electric field forming electrode; a substrate which is grounded and disposed below the electric field forming electrode, the substrate including a target surface; and an open circuit type voltage applying unit which supplies first electric charges to the electric field forming electrode to drop the biomolecular droplet onto the target surface of the substrate.