Abstract:
A laser fuse structure for a semiconductor device, the laser fuse structure having an array of laser fuses wherein one or more of the fuses in the array have a tortuous fuse line extending between first and second connectors that connect the fuse to an underlying circuit area.
Abstract:
A semiconductor chip includes a seal ring adjacent to edges of the semiconductor chip; an opening extending from a top surface to a bottom surface of the seal ring, wherein the opening has a first end on an outer side of the seal ring and a second end on an inner side of the seal ring; and a moisture barrier having a sidewall parallel to a nearest side of the seal ring, wherein the moisture barrier is adjacent the seal ring and has a portion facing the opening.
Abstract:
In one embodiment, the disclosure relates to a method and apparatus for inserting dummy patterns in sparsely populated portions of a metal layer. The dummy pattern counters the effects of variations of pattern density in a semiconductor layout which can cause uneven post-polish film thickness. An algorithm according to one embodiment of the disclosure determines the size and location of the dummy patterns based on the patterns in the metal layer by first surrounding the metal structure with small dummy pattern and then filling any remaining voids with large dummy patterns.
Abstract:
Methods for forming openings in damascene structures, such as dual damascene structures are provided, using plug materials having varied etching rates. In one embodiment, a semiconductor substrate is provided with a low-k material layer formed thereabove, the low-k material layer having an upper surface and at least one via opening formed therethrough. A first plug material layer is formed over the low-k material layer and filled in the via opening, the first plug material layer having a first etching rate. The first plug material layer is etched back to form a first plug partially filling the via opening. A second plug material layer is formed over the low-k material layer and the first plug. The second plug material layer is etched back to form a second plug partially below the upper surface of the low-k material layer, the second plug material layer having a second etching rate higher than the first etching rate.