Abstract:
A fuel cartridge with which liquid leakage through an air induction hole from a fuel tank is able to be prevented and safety is able to be improved is provided. Switching drive for opening and closing an air induction hole 12 is performed by a valve 13 capable of controlling the switching drive according to a control signal. Thereby, air introduction to a fuel tank 100 containing a fuel is able to be controlled. Thus, for example, at the time of high temperature or fuel disorder, by closing the air induction hole 12 by the valve 13, fuel leakage from the fuel tank through the air induction hole of an existing check valve is able to be prevented, and safety is able to be improved.
Abstract:
The present invention provides a liquid tank capable of maintaining inner pressure constant even in a state where it is inclined at any angle and a fuel cell using the same. A liquid tank includes: an outside casing provided with one gas inlet/outlet port; and a liquid-repellent structure provided on the inside of the outside casing, connecting two or more vertexes, sides, or faces of the outside casing and the gas inlet/outlet port, and made of a liquid-repellent material having a void through which gas passes.
Abstract:
A fuel cell system includes a power generator configured to generate electricity through supply of an oxidant gas and a fuel composed of a compound containing a carbon atom; a concentration detector configured to detect a concentration of carbon dioxide (CO2); and a controller configured to operate so as to allow the power generator to generate electricity when the concentration of carbon dioxide detected by the concentration detector is lower than a predetermined threshold concentration and so as to stop a generating operation of the power generator when the concentration of carbon dioxide detected is higher than or equal to the threshold concentration.
Abstract:
A liquid tank and a tubular structure for liquid tank capable of suctioning an internal liquid to the last drop even when the tank is tilted to any angle are provided. The tubular structure 40 has a duct line 41 extending from a specific position 41A in the tank body 30 in a direction toward apexes, sides, or faces of the tank body 30. Ends of the duct line 41 are contacted with the apexes, the sides, or the faces of the tank body 30, and have a liquid inlet 41B. Since the inlet 41B is limited to the ends of the duct line 41, flow of the liquid in the tank body 30 has a certain directivity that the liquid enters through only the inlet 41B into the duct line 41, is transported to the specific position 41A, and is suctioned outside. In the tubular structure 40, an inner structure 45 having voids thorough which the liquid passes such as a porous body is provided. The voids have an average pore diameter with which the liquid is able to be suctioned by capillary force from the inlet 41B to the specific position 41A, and thereby increase of flow path resistance is suppressed.
Abstract:
A fuel cell capable of uniformly supplying a fuel to a plurality of power generation sections, an electronic device, a fuel supply plate, and a fuel supply method are provided. A liquid fuel from a fuel tank is supplied to an inlet of a fuel diffusion plate, from which the liquid fuel is moved to outlets through flow paths, and the liquid fuel is supplied to each power generation section. At least one of the flow paths includes curved lines, preferably includes a circular arc, and the curvature radius of the curved line or the like is adjusted, and thereby each distance of the flow paths becomes equal to each other. Whether a linear distance between the inlet and the plurality of outlets is long or short, an almost equal amount of the liquid fuel reaches the plurality of outlets almost at the same time, and is supplied to each power generation section. The flow paths are preferably formed in a direction from the inlet toward apexes of an N-polygon (n is the number of the flow paths) centering on the inlet, and are more preferably toward apexes of a regular n-polygon.
Abstract:
A mutant protein having diaphorase activity is provided. A mutant protein includes an amino acid sequence obtained by deletion, replacement, addition, or insertion of at least one amino acid residue of a native-form amino acid sequence of SEQ. ID. No. 1, wherein the mutant protein has diaphorase activity with an enzyme activity of 245 or more.
Abstract translation:提供了具有心肌黄酶活性的突变蛋白。 突变蛋白包括通过SEQ ID NO:1的天然形式氨基酸序列的至少一个氨基酸残基的缺失,置换,添加或插入获得的氨基酸序列。 ID。 No.1,其中突变蛋白具有酶活性为245以上的心肌黄酶活性。
Abstract:
A color imaging element, a photosensor and a photoelectric transducer which use a protein and are capable of being stably used for a long time, and methods of manufacturing them are provided. A zinc-substituted cytochrome c552 is immobilized on a gold electrode with a self-assembled monolayer in between to form a blue-light photoelectric transducer. Alternatively, a cytochrome c552 is immobilized on a gold electrode with a self-assembled monolayer in between, and a fluorescent protein absorbing blue light is bonded to the cytochrome c552, thereby forming a blue-light photoelectric transducer. These photoelectric transducers each are used as a color imaging element or a blue-light photoelectric transducer of a photosensor.
Abstract:
A molecular device includes a gold electrode, cytochrome c552 or a derivative or variant thereof immobilized on the gold electrode, and an electron transfer protein coupled to the cytochrome c552 or the derivative or variant thereof. Electrons or holes, or both, are transferred through the electron transfer protein by transition of electrons between molecular orbitals of the electron transfer protein.
Abstract:
The present invention provides a small fuel cell system including a secondary battery, in which deterioration in the secondary battery is suppressed regardless of a temperature condition. A control unit adjusts the supply amount of a liquid fluid of a fuel pump so that charging current I2 to a secondary battery becomes smaller than a predetermined maximum charging current value Imax. Consequently, for example, even in the case of using a small secondary battery, the charging current I2 is limited to be smaller than a predetermined upper limit value (maximum charging current value Imax). In addition, a temperature detecting unit detects temperature T1 of the secondary battery and the control unit controls the maximum charging current value Imax in accordance with the detected temperature T1 of the secondary battery. In such a manner, the operation of limiting the charging current I2 in accordance with the temperature T1 of the secondary battery at that time is performed.
Abstract:
A power supply system capable of inhibiting electricity loss and deterioration of each power supply device while realizing high stability in the case where electricity supply is performed by using a plurality of power supply devices is provided. A switching element corresponding to a power supply device having a higher inter-terminal voltage out of two power supply devices selectively becomes in ON state, and a switching element corresponding to a power supply device having a lower inter-terminal voltage selectively becomes in OFF state. Thereby, overload on a specific power supply device is prevented, and current flow between the different power supply devices is able to be prevented without generating needless electricity loss. Further, since electricity of the power supply device having a higher inter-terminal voltage is selectively outputted, variation between the respective power supply devices becomes allowable to some extent.