Abstract:
In a method for producing a cover for a region of a substrate, first a frame structure is produced in the region of the substrate, and then a cap structure is attached to the frame structure so that the region under the cap structure is covered. Thus, sensitive devices may be protected easily and at low cost from external influences and particularly from a casting material for casting the entire packaged device, which results when a diced chip is cast.
Abstract:
A method for fabricating trench capacitors having trenches with mesopores, the trench capacitors being suitable both for discrete capacitors and for integrated semiconductor memories, significantly increases the surface area for electrodes of the capacitors and, hence, the capacitance thereof. The mesopores, which are small woodworm-hole-like channels having diameters from approximately 2 to 50 nm, are fabricated electrochemically. It is, thus, possible to produce capacitances with a large capacitance-to-volume ratio. Growth of the mesopores stops, at the latest, when the mesopores reach a minimum distance from another mesopore or adjacent trench (self-passivation). As such, the formation of “short circuits” between two adjacent mesopores can be avoided in a self-regulated manner. Furthermore, a semiconductor device is provided including at least one trench capacitor on the front side of a semiconductor substrate fabricated by the method according to the invention.
Abstract:
In a method for producing a protective cover for a device which is formed in a substrate, a first cover layer is initially deposited on the substrate, the first cover layer covering an area of the substrate which includes the device. Subsequently, an opening is formed in the first cover layer, the opening exposing that area of the substrate which includes the device. Then the opening formed in the first cover layer is filled up using a filling material. Subsequently, a second cover layer is deposited on the first cover layer and in the opening of the first cover layer which is filled up with the filling material. Thereafter, an opening is formed in the second cover layer to expose an area of the filling material. Finally, the filling material covering that area of the substrate which includes the device is removed, and the opening formed in the second cover layer is closed.
Abstract:
A method for the manufacture of micro-mechanical components from a stack of layers having at least a substrate, a sacrificial layer and a layer which is to be undercut includes forming at least one etch hole in the layer, which is to be undercut, and providing at least one passivation layer for controlling a selective depositing of a cover material which closes each of the etch holes after a step of etching the sacrificial layer. The passivation layer makes it possible that the undercut layer elements do not become excessively thick or grow together with the substrate due to the deposition of the cover material.
Abstract:
A DRAM capacitor is described that contains a BaSrTiO3 (BST) dielectric. The dielectric has a three-layer structure enabling the formation of a potential trough in which electrons can be permanently trapped.
Abstract:
A memory cell configuration in a semiconductor substrate is proposed, in which the semiconductor substrate is of the first conductivity type. Trenches which run parallel to one another are incorporated in the semiconductor substrate, and first address lines run along the side walls of the trenches. Second address lines are formed on the semiconductor substrate, transversely with respect to the trenches. Semiconductor substrate regions, in which a diode and a dielectric whose conductivity can be changed are arranged, are located between the first address lines and the second address lines. A suitable current pulse can be used to produce a breakdown in the dielectric, with information thus being stored in the dielectric.
Abstract:
A method for the fabrication of a doped silicon layer, includes carrying out deposition by using a process gas containing SiH4, Si2H6 and a doping gas. The doped silicon layer which is thus produced can be used both as a gate electrode of an MOS transistor and as a conductive connection. At a thickness between 50 and 200 nm it has a resistivity less than or equal to 0.5 m&OHgr;cm.
Abstract translation:一种用于制造掺杂硅层的方法,包括通过使用含有SiH 4,Si 2 H 6和掺杂气体的工艺气体进行沉积。 由此制造的掺杂硅层既可以用作MOS晶体管的栅电极,也可以用作导电连接。 在50至200nm的厚度之间,其电阻率小于或等于0.5mOMEGAcm。
Abstract:
A method for fabricating a dopant region is disclosed. The dopant region is formed by providing a semiconductor substrate that has a surface. An electrically insulating intermediate layer is applied to the surface. A doped semiconductor layer is then applied to the electrically insulating intermediate layer, the semiconductor layer being of a first conductivity type and contains a dopant of the first conductivity type. A temperature treatment of the semiconductor substrate at a predefined diffusion temperature is performed, so that the dopant diffuses partially out of the semiconductor layer through the intermediate layer into the semiconductor substrate and forms there a dopant region of the first conductivity type. The electrical conductivity of the intermediate layer is modified, so that an electrical contact between the semiconductor substrate and the semiconductor layer is produced through the intermediate layer.
Abstract:
Semiconductor islands respectively comprise at least a Si.sub.1-x Ge.sub.x layer and a distorted silicon layer that exhibits essentially the same lattice constant as the Si.sub.1-x Ge.sub.x layer are formed on an insulating layer that is located on a carrier plate. The semiconductor islands are preferably formed by selective epitaxy and comprise p-channel MOS transistors and/or n-channel MOS transistors.
Abstract:
One embodiment of the present invention relates to method for the concurrent deposition of multiple different crystalline structures on a semiconductor body utilizing in-situ differential epitaxy. In one embodiment of the present invention a preparation surface is formed, resulting in two distinct crystalline regions, a monocrystalline silicon substrate region and an isolating layer region. A monocrystalline silicon layer and an amorphous silicon layer are concurrently formed directly onto the preparation surface in the monocrystalline silicon substrate region and the isolating layer region, respectively. Deposition comprises the formation of two or more sub-layers. The process parameters can be varied for each individual sub-layer to optimize deposition characteristics.