Abstract:
Disclosed herein are Raman probes that include: (a) a first optical fiber for receiving laser excitation light from a light source and transmitting the same; (b) a first filter for receiving light from the first optical fiber and adapted to pass the laser excitation light and to block spurious signals associated with the light; (c) a second filter for receiving light from the first filter and adapted to direct the light toward a specimen; and (d) focusing apparatus for receiving the light from the second filter, focusing the light on the specimen so as to generate the Raman signal, and returning the Raman signal to the second filter. The second filter is further configured so that when the second filter receives the Raman signal from the focusing apparatus, the second filter filters out unwanted laser excitation light before directing the Raman signal to a second optical fiber.
Abstract:
A spectrometer comprising a collimating element for receiving input light and collimating the same, a dispersive optical element for receiving light from the collimating element and dispersing the same and a focusing element for receiving light from the dispersive optical element and focusing the same on a detector assembly wherein, where the wavelength dispersion of the dispersed light extends in the x-y direction, the collimating element and the focusing element are formed so as to maintain the desired optical parameters in the x-y plane while having a reduced size in the z direction.
Abstract:
Apparatus is disclosed for precision alignment and assembly of opto-electronic components relative to one another, the apparatus comprising a selected optical component having a periphery forming at least one flat surface; a holding block having at least one attachment region corresponding to the at least one flat surface of the selected optical component; a positioning mechanism having a first portion and a second portion, the first portion configured to position the selected optical component relative to another opto-electronic component, and the second portion configured to position the holding block relative to the selected optical component and in contact with a platform in attachment with the another opto-electronic component; and an attachment component disposed between the selected optical component and the holding block, and the attachment component disposed between the holding block and the platform so as to fix the selected optical component in position relative to the another opto-electronic component. A method of precision alignment and assembly of opto-electronic components relative to one another is disclosed, the method comprising: positioning the selected optical component relative to the another optical component using the first portion of the positioning mechanism; positioning the holding block relative to the selected optical component and in contact with the platform; and securing the selected optical component and the holding block, and the holding block and the platform, with the attachment component.
Abstract:
An optical isolator is disclosed for transmitting light in a first direction and blocking light in a second direction along an optical pathway. The optical isolator includes an input polarizer having a pass axis at first angle, an output polarizer having a pass axis at second angle, a Faraday rotator material between the polarizers having a Verdet constant and an axis of maximum length therethrough, generation means for generating a magnetic field around and inside the rotator material, and at least one reflector configured to define an optical length through the rotator material which is longer than the axis therethrough. The optical pathway length through the rotator material, the magnetic field strength, and the Verdet constant are selected so as to rotate light through the Faraday rotator material from the first angle to the second angle.
Abstract:
An external cavity wavelength stabilized laser system including a platform, a laser mounted to the platform with a laser mount, a diffractor mounted to the platform with a diffractor mount, and a lens mounted to the platform with a lens mount between the laser and the diffractor so as to transmit light therebetween wherein the wavelength of the laser is determined by (i) the angle of incidence of the light on the diffractor and (ii) the diffraction characteristics of the diffractor and wherein the system components are selected so that (i) a change in the angle of incidence of the light on the diffractor due to a change in the temperature of the system components substantially offsets (ii) a change in the diffraction characteristics of the diffractor.
Abstract:
The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
Abstract:
A fiber connector that facilitates alignment of and electrical communication with electrooptical devices on an optical fiber or interposed between optical fibers. An embodiment of in-line optoelectronic device packaging constructed according to principles of the invention includes a ferrule configured to receive an optical fiber with an optoelectronic device mounted on one end of the ferrule, for alignment with the fiber. Electrically-conductive deposits along the side of the ferrule supply electrical energy to or conduct electrical signals from the optoelectronic device. The optoelectronic device-carrying ferrule is inserted in a ceramic sleeve. Another ferrule, maintaining another optical fiber, also is inserted in the ceramic sleeve. Another embodiment constructed according to principles of the invention includes a second optoelectronic device mounted on the second ferrule. The electrically-conductive deposits permit ready serial deployment of optoelectronic devices between the optical fibers maintained by the ferrules in the sleeve.
Abstract:
According to an aspect of the present invention, a method for laser soldering optical components is described. In that method, a first selected material is disposed on the components to facilitate the deposition of solder. Subsequently, solder is disposed on that material and the component is aligned. A laser beam is properly focused on the solder such that the solder melts and, when the laser beam is turned off, hardens, thereby fixing the component in the desired position.
Abstract:
Novel light switches and attenuators are disclosed. In one form of the invention, a novel 2×2 crossbar switch is formed by positioning a movable reflector intermediate four fiberoptic lines. In another form of the invention, a 1×N switch is formed by providing a plurality of cantilevers each having a reflective surface thereon. In still another form of the invention, a novel light attenuator is formed by positioning a movable arm intermediate two fiberoptic elements.