Abstract:
Disclosed is a fabric for an airbag including a polyester fiber, and particularly to a polyester fabric for an airbag of which toughness is 3.5 to 6.0 kJ/m3 and tearing strength measured according to the ASTM D 2261 TONGUE method is 18 to 30 kgf, wherein the fabric includes polyester fiber of which toughness is 70 to 95 J/m3, a method of preparing the same, and an airbag for a car including the same.
Abstract translation:公开了一种用于包括聚酯纤维的气囊的织物,特别涉及一种韧性为3.5至6.0kJ / m 3的气囊聚酯织物,并且根据ASTM D 2261 TONGUE方法测量的撕裂强度为18至30kgf,其中 该织物包括韧性为70至95J / m 3的聚酯纤维,其制备方法,以及包括该聚酯纤维的汽车。
Abstract:
A semiconductor memory device that performs an error control operation when an error exists in an externally received command or an externally received address, and a method of driving the semiconductor memory device are provided. The semiconductor memory device includes a memory cell array having a single-level cell area and a multi-level cell area, a command decoder which receives a command from an external source and decoding the command, an area determination unit which receives an address from an external source and determines whether a memory cell corresponding to the address belongs to either the single-level cell area or the multi-level cell area, a command flag generation unit which generates at least one enable control signal according to the decoded command and the determination result, and a logic circuit which generates a control signal for driving the memory cells included in the memory cell array or performs an error control operation, in response to the enable control signal.
Abstract:
Disclosed herein is a stable liquid formulation comprising human growth hormone; L-lysine, L-arginine or polyethylene glycol 300; and poly(oxyethylene) poly(oxypropylene) copolymer, polyethylene glycol-15 polyoxystearate or polyethylene glycol-35 castor oil.
Abstract:
An apparatus and method for measuring a dimension of a pattern on a semiconductor device are provided. The method may include at least overlapping a reference pattern with an actual pattern that may be formed on a substrate, comparing the actual pattern with the reference pattern to determine whether the actual pattern may be aligned with the reference pattern, moving the actual pattern or the reference pattern in accordance with the results of the comparison to align the actual pattern with the reference pattern, and measuring a dimension of the actual pattern.
Abstract:
A method and apparatus for numerically analyzing a growth degree of grains grown on a surface of a semiconductor wafer, in which the growth degree of grains is automatically calculated and numerated through a computer by using an image file of the surface of the semiconductor wafer scanned by an SEM. A predetermined portion of a surface of the wafer is scanned using the SEM, and the scanned SEM image is simultaneously stored into a database. An automatic numerical program applies meshes to an analysis screen frame and selects an analysis area on a measured image. Thereafter, a smoothing process for reducing an influence of noise is performed on respective pixels designated by the meshes using an average value of image data of adjacent pixels. A standardization process is then performed, based on respective images in order to remove a brightness difference between the measured images. After comparing standardized image data values of the respective pixels with a predetermined threshold value, the number of pixels whose standardized image data value is greater than the threshold value is counted. The growth degree of grains on the surface of the wafer is calculated by numerating a ratio of the counted number with respect to a total number of the pixels contained within the analysis target image.
Abstract:
Scanning Electron Microscope (SEM) analysis is used to detect undesired conductive material on the gate sidewall spacers. The undesired conductive material is then etched from the sidewall spacers if the undesired material is detected by the SEM analysis. More specifically, integrated circuit field effect transistors may be manufactured by forming on an integrated circuit substrate, a plurality of field effect transistors, each comprising spaced apart source and drain regions, a gate therebetween including a sidewall, a sidewall spacer on the sidewall and contacts comprising conductive material on the source and drain regions. At least one of the field effect transistors may include undesired conductive material on the sidewall spacer thereof. The integrated circuit field effect transistors are tested by performing SEM analysis on the integrated circuit substrate to detect the undesired conductive material on the sidewall spacer. The undesired conductive material is then etched from the sidewall spacer if the undesired material is detected by the SEM analysis.
Abstract:
A broadband light source includes a first electrodeless lamp to generate first broadband light from plasma, a first elliptical reflector having first and second focuses, the first elliptical reflector enclosing a rear portion of the first electrodeless lamp positioned at the first focus of the first elliptical reflector such that the first broadband light is reflected from the first elliptical reflector toward a light collector as a collective light, a symmetrically curved reflector having a third focus, the symmetrically curved reflector positioned such that the third focus is coincident with one of the first and second focuses, and a laser irradiator to provide a laser beam to the first electrodeless lamp.
Abstract:
An overlay measuring method includes irradiating an electron beam onto a sample, including a multi-layered structure of overlapped upper and lower patterns formed thereon, to obtain an actual image of the upper and lower patterns. A first image representing the upper pattern and a second image representing the lower pattern are obtained from the actual image. A reference position for the upper and lower patterns is determined from a design image of the upper and lower patterns. A position deviation of the upper pattern with respect to the reference position in the first image and a position deviation of the lower pattern with respect to the reference position in the second image are calculated to determine an overlay between the upper pattern and the lower pattern.
Abstract:
Microelectronic substrate inspection equipment includes a gas container which contains helium gas, a helium ion generator which is disposed in the gas container and converts the helium gas into helium ions and a wafer stage which is disposed under the gas container and on which a substrate to be inspected is placed. The equipment further includes a secondary electron detector which is disposed above the wafer stage and detects electrons generated from the substrate, a compressor which receives first gaseous nitrogen from a continuous nitrogen supply device and compresses the received first gaseous nitrogen into liquid nitrogen, a liquid nitrogen dewar which is connected to the compressor and stores the liquid nitrogen, and a cooling device that is coupled to the helium ion generator. The cooling device is disposed on the gas container, and cools the helium ion generator by vaporizing the liquid nitrogen. Related methods are also disclosed.
Abstract:
A defect inspection apparatus comprises a table on which a substrate is placed, a first detection unit which is disposed above the table to detect an optical signal from the substrate, a second detection unit which is disposed above the table to detect an electrical signal from the substrate, and a signal processing unit which is connected to the first detection unit and the second detection unit to detect a chemical defect using the optical signal and the electrical signal.