Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
Abstract:
A method and apparatus for operating spatial light modulator have been disclosed herein. The spatial light modulator comprises an array of micromirror devices, each of which further comprises a reflective deflectable mirror plate attached to a deformable hinge, and an addressing electrode for addressing and deflecting the mirror plate.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
Disclosed herein is a micromirror device having in-plane deformable hinge to which a deflectable and reflective mirror plate is attached. The mirror plate rotates to different angles in response to an electrostatic field established between the mirror plate and an addressing electrode associated with the mirror plate.
Abstract:
The invention provides a method and apparatus for evaluating the product quality and performances of micromirror array devices through measurements of the electromechanical responses of the individual micromirrors to the driving forces of electric fields. The electromechanical responses of the micromirrors according to the present invention are described in terms of the rotational angles associated with the operational states, such as the ON and OFF state angles of the ON and OFF state when the micromirror array device is operated in the binary-state mode, and the response speed (i.e. the time interval required for a micromirror device to transit form one state to another) of the individual micromirrors to the driving fields.
Abstract:
A micromirror array comprises micromirrors of different properties for use particularly in display systems. Micromirrors of different properties can be arranged within the micromirror array according to a predetermined pattern, or randomly. However, it is advantageous to arrange the micromirrors with different properties within the micromirror array neither in complete order nor complete in random.
Abstract:
The micromirror device of the present invention comprises a reflective deflectable mirror plate and an addressing electrode provided for deflecting the mirror plate, wherein the addressing electrode is displaced along a direction perpendicular to the length of the hinge such that a portion of the addressing electrode is extended beyond the mirror plate.