Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
Abstract:
An electronic component mounted member includes a circuit board, an electronic component connected to the circuit board and an electrically conductive adhesive interposed between the electronic component and the circuit board. In a joining interface of the electrically conductive adhesive and an electrode of the circuit board, an intermediate layer that is formed of a thermoplastic insulating adhesive with a softening temperature of 100° C. to 300° C. is interposed between the electrically conductive adhesive and the electrode. An electrically conductive filler contained in the electrically conductive adhesive is present partially in the intermediate layer, thus allowing an electrical conduction between the electrically conductive adhesive and the electrode of the circuit board. This electronic component mounted member is used, and when a repair is necessary, a portion of the intermediate layer corresponding to the electronic component to be repaired is heated so as to raise a temperature of this portion to at least a melting point of the thermoplastic insulating adhesive, thereby melting the thermoplastic insulating adhesive. Then, the electronic component is removed with this state maintained.
Abstract:
There is provided a flip-chip mounting resin composition which can be used for a flip-chip mounting process that is high in productivity and reliability and thus can be applicable to a flip-chip mounting of a next-generation LSI. This flip-chip mounting resin composition comprises a resin, metal particles and a convection additive 12 that boils upon heating the resin 13. Upon the heating of the resin 13, the metal particles melt and the boiling convection additive 12 convects within the resin 13. This flip-chip mounting resin composition is supplied between a circuit substrate 10 and a semiconductor chip 20, and subsequently the resin 13 is heated so that the molten metal particles self-assemble into the region between each electrode of the circuit substrate and each electrode of the semiconductor chip. As a result, an electrical connection is formed between each electrode of the circuit substrate and each electrode of the semiconductor chip. Finally, the resin 13 is allowed to cure so that the semiconductor chip 20 is secured to the circuit substrate 10, which leads to in a formation of a flip chip assembly.
Abstract:
A resin containing a conductive particle and a gas bubble generating agent is supplied in a space between the substrates each having a plurality of electrodes. The resin is then heated to melt the conductive particle contained in the resin and generate gas bubbles from the gas bubble generating agent. A step portion is formed on at least one of the substrates. In the process of heating the resin, the resin is pushed aside by the growing gas bubbles, and as a result of that, the conductive particle contained in the resin is led to a space between the electrodes, and a connector is formed in the space. At the same time, the resin is led to a space between parts of the substrates at which the step portion is formed, and cured to fix the distance between the substrates.
Abstract:
A semiconductor device having a semiconductor elements formed with higher density is provided. Furthermore an image display device using the semiconductor device is also provided.A semiconductor device comprising a resin film that has a through hole that penetrates from one surface to the other surface thereof, an organic semiconductor disposed inside the through hole, an insulating film on one end of the organic semiconductor, a gate electrode on the insulating film, a source electrode connected electrically to the other end of the organic semiconductor and a drain electrode connected electrically to the other end of the organic semiconductor.
Abstract:
The invention involves mounting a solder resin composition (6) including a solder powder (5a) and a resin (4) on the first electronic component (2); arranging such that the connecting terminals (3) of the first electronic component (2) and the electrode terminals (7) of the second electronic component (8) are facing each other; ejecting a gas (9a) from a gas generation source (1) included in the first electronic component (2) by heating the first electronic component (2) and the solder resin composition; and inducing the flow of the solder powder (5a) in the solder resin composition (6) by inducing convection of the gas (9a) in the solder resin composition (6), and electrically connecting the connecting terminals (3) and the electrode terminals (7) by self-assembly on the connecting terminals (3) and the electrode terminals (7). Through this are provided a flip chip packaging method that enables connecting, with high connection reliability, electrode terminals of a semiconductor chip wired with narrow pitch and connecting terminals of a circuit board, and a bump formation method for packaging on a circuit board.
Abstract:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (II), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21).
Abstract:
A flip chip mounting method which is applicable to the flip chip mounting of a next-generation LSI and high in productivity and reliability as well as a method for connecting substrates are provided. A circuit board 10 having a plurality of connecting terminals 11 and a semiconductor chip 20 having a plurality of electrode terminals 21 are disposed in mutually facing relation and a resin 13 containing conductive particles 12 and a gas bubble generating agent is supplied into the space therebetween. In this state, the resin 13 is heated to generate gas bubbles 30 from the gas bubble generating agent contained in the resin 13. The resin 13 is pushed toward the outside of the generated gas bubbles 30 by the growth thereof. The resin 13 pushed to the outside is self-assembled in the form of columns between the respective terminals of the circuit board 10 and the semiconductor chip 20. In this state, by pressing the semiconductor chip 20 against the circuit board 10, the conductive particles 12 contained in the resin 13 self-assembled between the facing terminals are brought into contact with each other to provide electrical connection between the terminals.
Abstract:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (11), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21). Finally, the resin is cured so as to secure the semiconductor chip (20) to the wiring substrate (10).
Abstract:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (11), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21). Finally, the resin is cured so as to secure the semiconductor chip (20) to the wiring substrate (10).