Abstract:
Cutout and/or keep away regions are etched in the winding structure near the gapped center leg of a magnetic core. This reduces eddy current losses caused by the leakage field and improves current uniformity and current sharing between windings thereby increasing converter efficiency. Windings closest to the air gap are suitably formed with both keep away regions and cutouts. Windings a little further away are formed with only cutouts and the windings furthest away are unchanged. This approach keeps the net winding losses low in the presence of a fringing field. The precise configuration is determined by the core structure, air gap and winding arrangements.
Abstract:
A vertically packaged cellular power converter solves the problems associated with conventional designs and paves the way for a cellular circuit architecture with ultra-low interconnect resistance and inductance. The vertical packaging results in a power flow in the vertical direction (from the bottom to the top) with very short internal interconnects, thereby minimizing the associated conduction losses and permitting high conversion efficiency at high currents. The cellular architecture is ideally suited for generating multiple supply voltages.
Abstract:
A matrix integrated magnetics (MIM) “Extended E” core in which a plurality of outer legs are disposed on a base and separated along a first outer edge to define windows there between. A center leg is disposed on the top region of the base and separated from the outer legs to define a center window. The center leg is suitably positioned along a second outer edge opposite the first or between outer legs positioned along opposing outer edges. A plate is disposed on the outer legs opposite the base.
Abstract:
Anodized aluminum anode and cathode foils are interleaved in a stack separated by spacers saturated with electrolyte in an enclosure. The anode foils and cathode foils have tabs which protrude from the housing and are cold welded to leads outside the housing, where they are not exposed to electrolyte. This permits using copper leads, which can be soldered to traces on a printed circuit board. A flat capacitor can be fixed underneath a PCB or even used as the substrate for a circuit, resulting in high volume efficiencies and the possibility of using it as a heat sink for other components.
Abstract:
Provided is a method for in-situ coating a substrate or matrix with magnetic metal nanoparticles. A metal salt, which may be organic or inorganic, is introduced into a solution of liquid polyol. In the presence of mechanical stirring and heat, a reduction process occurs wherein the magnetic metal nanoparticles precipitate out of solution and deposit or attach to one or more surfaces of the substrate. The concentration of reaction precursors, combined with the polyol, may be varied to control the size and shape of the magnetic nanoparticles.
Abstract:
A method of determining a state of a Storage Area Network SAN is provided comprising analyzing data collected from components in the SAN, calculating a redundancy level of the SAN based on the analyzed data, and determining the state of the SAN based on the calculated redundancy level. The redundancy levels indicate the sensitivity of the SAN to a fault in one of the components. The method also includes receiving user policy settings allowing automatic correction of the SAN and auto-correcting the SAN in response to a change in the SAN state and in dependence on the user policy settings. The redundancy levels can be used by an administrator to set the user policy settings. An apparatus for carrying out the method is also provided.
Abstract:
A method and device for producing an aligned carbon nanotube array. The arrays of aligned carbon nanotubes (CNTs) may be formed by drying liquid dispersions of CNTs on a nanoporous substrate under an applied electrostatic field. The array may be used in a number of applications including electronics, optics, and filtration, including desalination.
Abstract:
A method, system and computer program product for migrating at least one switch in a storage area network is disclosed. The migration is done by analysing the I/O traffic to identify patterns in the I/O traffic of the switch; forecasting future I/O workload of the switch based on one or more identified patterns in the I/O traffic, determining appropriate timing for migration based on the identified patterns and administrator inputs; processing the storage area network configuration data to identify the storage network physical and logical access paths to the or each selected switch to create a first connectivity map; generating a second connectivity map based on the first connectivity map and administrator inputs; and migrating the or each switch migration based on the second connectivity map and the appropriate timing. The migration may comprise routing the I/O traffic from the switch to be migrated to the alternate switches in the storage area network. The migration may further comprising transforming zones on the switch to be migrated and deploying the transformed zones to the new switch
Abstract:
A system and method of input/output (I/O) workload analysis of the components in a storage area network (SAN) is disclosed. In one embodiment, a method for analyzing I/O workloads of components in the SAN includes determining host bus adapter (HBA) to storage port oversubscription ratios and HBA to inter-switch link (ISL) oversubscription ratios in the SAN, selecting a subset of the components for monitoring based on the HBA to storage port oversubscription ratios and the HBA to ISL oversubscription ratios, continuously monitoring the subset of the components and storing I/O statistics of the subset of the components, and forecasting expected I/O workloads of the subset of the components based on current I/O workloads associated with the I/O statistics of the subset of the components and respective I/O workload threshold values of the subset of the components.
Abstract:
A method of forming packages containing SiC or other semiconductor devices bonded to other components or conductive surfaces utilizing transient liquid phase (TLP) bonding to create high temperature melting point bonds using in situ formed ternary or quaternary mixtures of conductive metals and the devices created using TLP bonds of ternary or quaternary materials. The compositions meet the conflicting requirements of an interconnect or joint that can be exposed to high temperature, and is thermally and electrically conductive, void and creep resistant, corrosion resistant, and reliable upon temperature and power cycling.