Abstract:
A curable composition for bonding windings or core laminates in an electrical machine is presented. The curable composition includes: (A) about 10 weight percent to about 25 weight percent of a polyfunctional cyanate ester; (B) about 35 weight percent to about 65 weight percent of a first difunctional cyanate ester, or a prepolymer thereof; (C) about 15 weight percent to about 40 weight percent of a second difunctional cyanate ester, or a prepolymer thereof. An associated method is also presented.
Abstract:
A method of making a composite magnet wire includes mixing alumina nano particles with a polyimide polymer to form a polyimide mixture, the alumina nano particles having a surface treatment applied to outer surfaces of the alumina nano particles, the surface treatment including a phenyl-silane; coating a wire with the polyimide mixture by passing the wire through a coating die; heating the coated wire; cooling the coated wire; passing the coated wire through an annealing oven at a temperature of about 425° C. to about 475° C. at a speed of about 15 to about 30 feet per minute to anneal the coated wire; cooling the annealed coating wire; spooling the coated wire onto a metal spool; heating the spooled wire at about 300° C. to about 400° C. for about 20 to about 40 minutes; and cooling the heated spooled wire.
Abstract:
A high-temperature insulation assembly for use in high-temperature electrical machines and a method for forming a high-temperature insulation assembly for insulating conducting material in a high-temperature electrical machine. The assembly includes a polymeric film and at least one ceramic coating disposed on the polymeric film. The polymeric film is disposed over conductive wiring or used as a conductor winding insulator for phase separation and slot liner.