Abstract:
An electric machine includes a rotor assembly having a rotor core that extends in an axial direction and a stator assembly surrounding and coaxial with the rotor assembly. The stator assembly includes a stator core having slots extending in a radial direction into an inner surface of the stator core and extending axially from a first end surface to a second end surface of the stator core. The stator assembly includes stator coil windings disposed within the respective slots of the stator core and a first electrically insulating conformal coating disposed between the stator core and the stator coil windings. The conformal coating includes a polymer matrix impregnated with an effective amount of thermally conductive ceramic materials, above a percolation threshold, that form continuous thermal pathways across a thickness of the first coating.
Abstract:
A system includes a stator core, which includes a plurality of teeth and a plurality of bridges. The plurality of teeth are disposed about an axis of the stator core, wherein each tooth of the plurality of teeth extends in a radial direction from a proximal end to a distal end. Each bridge of the plurality of bridges is disposed between two adjacent teeth and connects the proximal ends of the two teeth. The plurality of teeth and the plurality of bridges define a plurality slots, each having a proximal end and a distal end, wherein the proximal end of each slot is closed and the distal end of each slot is open.
Abstract:
A powered system that has an electric power system with a stator having plural poles with each pole having a conductive winding that may surround the corresponding pole and may be configured to generate a magnetic field, and a rotor that may be configured to rotate in response to the magnetic field generated by the stator. The at least one of the conductive windings may be insulated with an insulation material configured to conduct heat from the at least one conductive winding while operating at a temperature above 600° C.
Abstract:
A cable that includes a conductor defining a hollow interior, a casing surrounding the conductor, an electrical insulator positioned between the conductor and the casing, and a fluid positioned within the hollow interior of the conductor.
Abstract:
A stator assembly of an electric machine includes a stator core having a slot extending between a first end and a second end, where the slot includes a first slot exit at the first end and a second slot exit at the second end. Also, the stator assembly includes a plurality of windings, where one of the plurality of windings is disposed in the slot and extends from the first slot exit to the second slot exit, and where the plurality of windings includes at least one conductor and an insulation disposed around the at least one conductor. Further, the stator assembly includes a dielectric plate coupled to one of the first slot exit and the second slot exit and configured to suppress surface discharges on windings present at one of the first slot exit and the second slot exit to which the dielectric plate is coupled.
Abstract:
A curable composition for bonding windings or core laminates in an electrical machine is presented. The curable composition includes: (A) about 10 weight percent to about 25 weight percent of a polyfunctional cyanate ester; (B) about 35 weight percent to about 65 weight percent of a first difunctional cyanate ester, or a prepolymer thereof; (C) about 15 weight percent to about 40 weight percent of a second difunctional cyanate ester, or a prepolymer thereof. An associated method is also presented.
Abstract:
An insulated winding is provided, wherein the insulated winding includes (a) an electrically conductive core; (b) an electrically insulating non-porous ceramic coating disposed on the conductive core; and (c) a composite silicone coating including a plurality of electrically insulating filler particles disposed on the ceramic coating. Further, a method of making an insulated winding is also provided.
Abstract:
A high-temperature insulation assembly for use in high-temperature electrical machines and a method for forming a high-temperature insulation assembly for insulating conducting material in a high-temperature electrical machine. The assembly includes a polymeric film and at least one ceramic coating disposed on the polymeric film. The polymeric film is disposed over conductive wiring or used as a conductor winding insulator for phase separation and slot liner.
Abstract:
An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.
Abstract:
A system for passivating a plurality of hollow copper strands in a stator water cooling system including; a first storage tank containing a cleaning solution, a second storage tank containing rinsing water; a third storage tank containing a passivation solution; a plurality of conduits connecting the first, second, and third storage tanks in a closed loop with the plurality of hollow copper strands; and an alkaline pump for pumping the cleaning solution, the rinsing water, and the passivation solution through the closed loop.