Abstract:
Embodiments of the present disclosure provide techniques and configurations for controlled power level adjustment of a wireless charging apparatus. In one instance, the apparatus may comprise a charging module to radiate an electromagnetic field to wirelessly charge an electronic device in proximity to the wireless charging apparatus; and a control module communicatively coupled with the charging module to adjust a power level of the electromagnetic field, radiated by the charging module, in response to a determination of an environmental condition in relation to the wireless charging apparatus. The control module may be configured to receive information indicative of the environmental condition from multiple sources distributed between the apparatus and the electronic device, and make the determination based at least in part on the received information. The environmental condition may comprise a presence of human tissue in proximity to the wireless charging apparatus. Other embodiments may be described and/or claimed.
Abstract:
The disclosure relates to a method, apparatus and system to wirelessly charge a device. In one embodiment, the disclosure relates to a wireless charging station having a detector to identify presence of a device at or near the charging station that would otherwise be damaged by the magnetic field of the wireless charging station. The detector detects a response signal emitted from the device under charge and determines whether to generate the desired magnetic field to charge the device or to cease the magnetic field to preserve the device from potential damage caused by the magnetic field.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for reducing induced currents in a apparatus chassis. For example, a fractal slot is constructed in the apparatus chassis to reduce the induced currents, and enhance passage of magnetic fields through the apparatus chassis. In this example, the fractal slot may include a no-self loop fractal space filling curve shape to provide high impedance to the induced currents.
Abstract:
Techniques for wireless charging in a system, method, and apparatus are described herein. For example, the apparatus includes a first wireless power receiving coil configured to receive power from a first wireless power transmitting coil of a wireless charger. The apparatus also includes a second wireless power transmitting coil coupled to the first wireless power receiving coil, wherein the second wireless power transmitting coil is configured to propagate current resulting in a magnetic field.
Abstract:
A combined antenna device includes a coupled feed antenna including a first grounded coupling element and a millimeter wave phased array antenna having a ground plane structure including a portion of the first grounded coupling element.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for controlled power level adjustment of a wireless charging apparatus. In one instance, the apparatus may comprise a charging module to radiate an electromagnetic field to wirelessly charge an electronic device in proximity to the wireless charging apparatus; and a control module communicatively coupled with the charging module to adjust a power level of the electromagnetic field, radiated by the charging module, in response to a determination of an environmental condition in relation to the wireless charging apparatus. The control module may be configured to receive information indicative of the environmental condition from multiple sources distributed between the apparatus and the electronic device, and make the determination based at least in part on the received information. The environmental condition may comprise a presence of human tissue in proximity to the wireless charging apparatus. Other embodiments may be described and/or claimed.
Abstract:
Wireless wearable devices having self-steering antennas are disclosed. A disclosed example wearable device includes an antenna to be communicatively coupled to a wireless data transceiver of a base station. The disclosed example wearable device also includes a steering mount coupled to the antenna, where the steering mount is to adjust an orientation of the antenna towards a wireless coverage zone associated with the wireless data transceiver based on a movement of the wearable device.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for integrating a near field communications (NFC) coil antenna in a portable device. For example, the NFC antenna is integrated under a metal chassis of the portable device. The metal chassis and a conductive coating—that is integrated underneath the full metal chassis—are designed to include one or more slots to provide high impedance to Eddy current induced in the conductive coating.
Abstract:
Example wirelessly powered unmanned aerial vehicles and tracks for providing wireless power are described herein. An example apparatus includes a track section having a transmitter coil to generate an alternating magnetic field and an unmanned aerial vehicle having a receiver coil. The alternating magnetic field induces an alternating current in the receiver coil when the unmanned aerial vehicle is disposed in the alternating magnetic field.
Abstract:
Embodiments related to systems, methods, and computer-readable media to enable a power transmit unit (PTU) device are described. In one embodiment a PTU comprises a transmit coil configured for wireless charging via magnetic coupling, a power delivery system coupled to the transmit coil, signal processing circuitry to detect harmonic distortion that is induced in the transmit coil by a device inside the near field of the transmit coil, and control circuitry configured to adjust an output power of the power amplifier when triggered by a detection of an Near Field Communications (NFC) device, a Radio Frequency Identification Device (RFID), or any other such device which may be damaged by the energy emitted from the transmit coil.