Abstract:
Methods and systems are provided for band translation with protection. A signal processing circuitry (chip) may be configured to handle a plurality of signals, comprising at least a first signal corresponding to internal communication within an in-premises network and at least a second signal originating from a source external to the in-premises network; and to process on-chip the plurality of input signals, to generate one or more output signals. In this regard, at least one output signal may comprise components corresponding to the first signal and the second signal; and the processing may be configured to mitigate on-chip, during generating of the one or more outputs, at least one effect of including in the at least one output signal a first component corresponding to one of the first signal and the second signal on a second component corresponding to the other one of the first signal and the second signal.
Abstract:
An Internet protocol low noise block downconverter (IP LNB), which may be within a satellite reception assembly, may be operable to determine location information and time information of the IP LNB, and may communicate the determined location information and the corresponding time information to a wireless communication device communicatively coupled to the IP LNB. The communicated location information may be configured to enable the wireless communication device to determine its location based on the determined location information and the corresponding time information. The IP LNB may determine the location information and/or the time information of the IP LNB based on global navigation satellite system (GNSS) signals, which may be received via the satellite reception assembly and may be processed via the IP LNB. The IP LNB may provide services based on the determined location information and/or the determined time information of the IP LNB.
Abstract:
A transceiver system may be configured to provide tunable bandwidths. The transceiver may comprise a signal processing component and a filtering component, which may comprise a plurality of filters. The signal processing component may determine one or more adjustments that are applicable to one or both of a first filter that is configured for filtering signals corresponding to a first frequency band associated with a first stream, and a second filter that is configured for filtering signals corresponding to a second frequency band associated with a second stream. The one or more adjustments may correspond to modifications in one or both of the first frequency band and the second frequency band. The one or more adjustments may be communicated to the filtering component, which may apply the adjustments to one or more of the plurality of filters.
Abstract:
Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
Abstract:
Receiver architectures and methods of processing harmonic rich input signals employing harmonic suppression mixers are disclosed herein. The disclosed receivers, mixers, and methods enable a receiver to achieve the advantages of switching mixers while greatly reducing the mixer response to the undesired harmonics. A harmonic mixer can include a plurality of mixers coupled to an input signal. A plurality of phases of a local oscillator signal can be generated from a single local oscillator output. Each of the phases can be used to drive an input of one of the mixers. The mixer outputs can be combined to generate a frequency converted output that has harmonic rejection.
Abstract:
Methods and systems are provided for loop-through for multi-chip communication systems. Receiver circuitry, that is operable to receive one or more input feeds, may comprise a plurality of chips, each of which may be configurable to generate a corresponding output comprising one or more feed elements (e.g., channels) extracted from the input feed(s). However, only a first chip may be operable to handle reception and/or initial processing of the one or more input feeds, with each one of the remaining chips processing a loop-through feed generated by the first chip, in order to generate the corresponding output of that chip. The first chip generates the loop-through feed based on the one or more input feeds, such as after the initial processing thereof in the first chip. Generating the loop-through feed may comprise applying channelization (e.g., separately for each remaining chip), switching based processing, and/or interfacing based processing.
Abstract:
Methods and systems are provided for adaptive management of local networks, such as in-premises networks, which may have access to and/or may be connected to external networks, such cable or satellite networks. A network management device that manages a local network may receive from a client device in the local network, a communication request relating to communication within the local network, may process the communication request, and may configure the communication of the client device based on processing of the communication request. The processing of the communication request may include assessing effects of communication of the client device, at the network management device, on other connections and/or communications, with the other connections and/or communications including external connections and/or communications with one or more devices and/or networks external to the local network. Processing of the communication request may include assessing likelihood of interference at the network management device.
Abstract:
A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
Abstract:
Methods and systems are provided for adaptive management of local networks, such as in-premises networks, which may have access to and/or may be connected to external networks, such cable or satellite networks. A network management device that manages a local network may receive from a client device in the local network, a communication request relating to communication within the local network, may process the communication request, and may configure the communication of the client device based on processing of the communication request. The processing of the communication request may include assessing effects of communication of the client device, at the network management device, on other connections and/or communications, with the other connections and/or communications including external connections and/or communications with one or more devices and/or networks external to the local network. Processing of the communication request may include assessing likelihood of interference at the network management device.
Abstract:
A satellite reception assembly may comprise a first module operable to demodulate a first one or more channels of a signal output by a direct broadcast satellite (DBS) low noise block downconverter (LNB). The first module may output a signal to a second module which may demodulate a second one or more channels of the signal output by the DBS LNB. The second module may be installed after the satellite reception assembly has been deployed upon a number of clients served by the satellite reception assembly reaching a threshold.