Abstract:
Stacked semiconductor die assemblies with support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a plurality of support members also attached to the package substrate. The plurality of support members can include a first support member and a second support member disposed at opposite sides of the first semiconductor die, and a second semiconductor die can be coupled to the support members such that at least a portion of the second semiconductor die is over the first semiconductor die.
Abstract:
A semiconductor package including a package substrate with an upper surface, a controller, and a die stack. The controller and the die stack are at the upper surface. The die stack includes a shingled sub-stack of semiconductor dies, a reverse-shingled sub-stack of semiconductor dies, and a bridging chip. The bridging chip is bonded between the shingled sub-stack and the reverse-shingled sub-stack, and has an internal trace. A first wire segment is bonded between the controller and a first end of the bridging chip, and a second wire segment is bonded between a second end of the bridging chip and each semiconductor die of the shingled sub-stack. The internal trace electrically couples the first and second wire segments. Additionally, a third wire segment is bonded between the controller and each semiconductor die of the reverse-shingled sub-stack.
Abstract:
Modular systems in packages, and associated devices, systems, and methods, are disclosed herein. In one embodiment, a system comprises a main module package and an upper module package. The main module package includes a first substrate and a first electronic device mounted on a first side of the first substrate. The upper module package includes a second substrate and one or more second electronic devices mounted on a first side of the second substrate. The second substrate includes a cavity at a second side of the second substrate opposite the first side, and the upper module package is mountable on the first side of the first substrate of the main module package such that the first electronic device is positioned within the cavity and the second substrate generally surrounds at least a portion of a perimeter of the first electronic device.
Abstract:
Methods, systems, and devices for wire bonding for stacked memory dies are described. A memory system may include a stack of memory dies. As the stack grows to include more and more memory dies, the length of the wires coupling the memory dies with the control circuit may increase. Bonding multiple wires using an adhesive may increase a gap between neighboring wires coupled with the same memory die or different memory dies. For example, bonding one wire to a neighboring wire may pull one or both of the bonded wires away from their original placement, increasing a gap between the bonded wires and one or more neighboring wires. Bonding the wires coupled with a lower memory die may increase a gap such that sagging wires coupled with an upper memory die may be positioned in the gap to avoid shorting with the lower wires.
Abstract:
A semiconductor device assembly is provided. The assembly includes an outer semiconductor device which has an active surface and a back surface. The back surface includes a cut that extends to a depth between the active surface and the back surface, and uncut regions on opposing sides of the cut. The assembly further includes an inner semiconductor device disposed within the cut of the outer semiconductor device.
Abstract:
Semiconductor devices with three-dimensional trace matching features, and related systems and methods, are disclosed herein. In some embodiments, an exemplary semiconductor device includes at least one semiconductor die and a redistribution layer disposed over the at least one semiconductor die and extending across a longitudinal plane. The redistribution layer includes first and second traces each electrically coupled to the at least one semiconductor die. The first trace is disposed in a first travel path included in a first effective path length. The second trace is disposed in a second travel path different from the first travel path. The second the second travel path includes at least one segment at a non-right, non-zero angle such that the at least one segment is neither parallel nor perpendicular to the longitudinal plane. Further, the second travel path is included in a second effective path length equal to the first path length.
Abstract:
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
Abstract:
An apparatus includes a primary layer of a substrate that includes an open area that extends through the primary layer to an inner layer of the substrate. The apparatus includes a secondary layer of the substrate. The apparatus also includes the inner layer of the substrate that is positioned between the primary layer and the secondary layer. The inner layer includes component bond pads that are disposed on the inner layer and that are exposed via the open area of the primary layer.
Abstract:
Substrates for semiconductor packages, including hybrid substrates for decoupling capacitors, and associated devices, systems, and methods are disclosed herein. In one embodiment, a substrate includes a first pair and a second pair of electrical contacts on a first surface of the substrate. The first pair of electrical contacts can be configured to receive a first surface-mount capacitor, and the second pair of electrical contacts can be configured to receive a second surface-mount capacitor. The first pair of electrical contacts can be spaced apart by a first space, and the second pair of electrical contacts can be spaced apart by a second space. The first and second spaces can correspond to first and second distances between electrical contacts of the first and second surface-mount capacitors.
Abstract:
An apparatus includes a substrate for mounting an integrated circuit. The substrate includes a primary layer including a first surface that is a first external surface of the substrate. The substrate includes an inner layer that is located below the primary layer and including a second surface. A portion of the second surface of the inner layer is exposed via an open area associated with the primary layer. The inner layer includes a first multiple of wire bond pads that are exposed via the open area associated with the primary layer.