Abstract:
A transmission line portion of a flat cable includes first regions and second regions connected alternately. In the first region, the transmission line portion is a flexible tri-plate transmission line including a dielectric element including a signal conductor, a first ground conductor including opening portions, and a second ground conductor which is a solidly filled conductor. In the second region, the transmission line portion is a hard tri-plate transmission line including a wide dielectric element including a meandering conductor, and a first ground conductor and a second ground conductor which are solidly filled conductors. A variation width of the characteristic impedance in the second region is larger than a variation width of the characteristic impedance in the first region.
Abstract:
A plurality of first linear sections in a coil conductor are disposed on a lower surface of a first resin sheet. A plurality of second linear sections in the coil conductor are disposed on an upper surface of a second resin sheet. A plurality of via conductors in the coil conductor are disposed in the resin sheets. The coil conductor including the linear sections and the via conductors constitutes an antenna section. A first ground conductor is disposed on the lower surface of a third resin sheet. A second ground conductor is disposed on the upper surface of a fourth resin sheet. The first ground conductor and the second ground conductor are connected to each other by a interlayer connection conductor including a plurality of via conductors. The interlayer connection conductor does not define a closed loop surrounding the coil conductor.
Abstract:
An antenna device includes a multilayer body including magnetic layers or dielectric layers that are stacked, a first coil conductor that has a winding axis extending in a direction perpendicular or substantially perpendicular to a stacking direction of the multilayer body, the first coil conductor being provided in the multilayer body, and a second coil conductor that has a winding axis extending in a direction perpendicular or substantially perpendicular to the winding axis of the first coil conductor, the second coil conductor being provided in the multilayer body.
Abstract:
An antenna device is configured as a jacket of a communication terminal, such as a mobile terminal, and a communication apparatus includes the antenna device attached to the communication terminal. The antenna device uses an HF-band high frequency signal as a carrier frequency, and is configured as a reader/writer antenna device for a near field communication system. The base body of the antenna device is a plate-shaped base member made of a resin. An antenna coil and a feeding coil are provided integrally with the plate-shaped base member. High-frequency signals are transmitted between the feeding coil and the antenna coil through magnetic coupling in a non-contact manner.
Abstract:
An antenna device includes a conductor surface in which an opening having an open edge portion in communication with the outside is provided, a feed element including a first coil connected to the feed element and a second coil magnetically coupled to the first coil, a first mounting portion disposed in the open edge portion and connected to a first end of the second coil, and a second mounting portion disposed in the open edge portion in a state isolated from the first mounting portion and connected to a second end of the second coil. The first mounting portion and the conductor surface are directly or indirectly conducted to each other, and the second mounting portion and the conductor surface are directly or indirectly conducted to each other. A loop is defined around the opening through the first mounting portion, the second mounting portion, and the second coil.
Abstract:
An antenna device includes a first conductor plane and a second conductor plane that face each other. The first conductor plane and the second conductor plane are electrically continuous through a first connection conductor, a second connection conductor, and a chip capacitor. A power feed coil is disposed between the first conductor plane and the second conductor plane. The power feed coil includes a magnetic core and a coil conductor. The coil conductor defines a pattern such that the coil conductor winds around the magnetic core. The power feed coil is disposed at a position closer to the first connection conductor and magnetically couples with the first connection conductor.
Abstract:
An antenna device includes a power feed coil antenna connected to a power feed circuit, and a booster coil antenna including wound coil conductors and disposed so as to be electromagnetically coupled to the power feed coil antenna. The power feed coil antenna includes a first coil antenna and a second coil antenna each including a coil conductor, and the coil conductors of the first and second coil antennas are connected in phase with each other. The first coil antenna is disposed such that the winding axis of the coil conductor of the first coil antenna extends perpendicularly or substantially perpendicularly to the winding axis of the booster coil antenna, and such that at least a portion of the first coil antenna overlaps the coil conductor of the booster coil antenna as viewed in plan. The second coil antenna is disposed in the vicinity of the coil conductors such that the winding axis of the coil conductor of the second coil antenna extends in parallel with the winding axis of the booster coil antenna, and such that at least a portion of a coil opening of the second coil antenna does not overlap the coil conductors of the booster coil antenna as viewed in plan.
Abstract:
An antenna device includes a feed coil connected to a feed circuit, and a coil antenna disposed near the feed coil. A ferrite sheet, in which a magnetic loss term in a usable frequency band is relatively large, is provided between the feed coil and the coil antenna. The feed coil and the coil antenna are magnetically coupled to each other via the ferrite sheet. With this configuration, signal transmission efficiency between the feed coil and the coil antenna is enhanced.
Abstract:
An antenna device or a communication terminal device including the antenna device includes ground conductor, which serves as a plate-shaped conductor and is provided in an inner layer of a circuit board. An antenna coil is mounted so that a first main surface of a magnetic core faces the circuit board. The antenna coil is arranged so that a first conductor portion of a coil conductor is at a position that is closer to the ground conductor than a second conductor portion. The antenna coil is arranged so that the first conductor portion of the coil conductor is positioned in the vicinity of a longitudinal direction end portion of a casing, and the first conductor portion of the coil conductor is bent in a direction toward the ground conductor.
Abstract:
A transmission line device includes a first multilayer substrate with a transmission line including laminated insulating base materials and a conductor pattern on the insulating base materials, and a second multilayer substrate defining a connected member to which the transmission line of the first multilayer substrate is connected. The conductor pattern includes a signal conductor pattern and a signal electrode pad electrically connected to the signal conductor pattern. The first multilayer substrate includes a resist film provided on a surface of a laminate of the insulating base materials, and the resist film includes an opening that is separated from an outer edge of the signal electrode pad in a surface direction of the laminate of the insulating base material and exposes the signal electrode pad.