Abstract:
A method for storage unit communication is provided. The method includes detecting an event associated with a loss of trust for the data stored within a storage unit and encrypting, at the storage unit, data that is being transmitted along an outbound path from the storage unit to a requestor, wherein the encrypting is responsive to detecting the event.
Abstract:
A method for extending data lifetime for reference in deduplication is provided. The method includes determining that a quantity of user data has at least a threshold amount of data that is re-created in a storage system. The method includes protecting at least portions of the quantity of user data from erasure by garbage collection in the storage system during a predetermined time interval, wherein the protected at least portions are available for data deduplication of further user data in the storage system during the predetermined time interval.
Abstract:
A plurality of storage nodes in a single chassis is provided. The plurality of storage nodes in the single chassis is configured to communicate together as a storage cluster. Each of the plurality of storage nodes includes nonvolatile solid-state memory for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes such that the plurality of storage nodes maintain the ability to read the user data, using erasure coding, despite a loss of two of the plurality of storage nodes. A plurality of compute nodes is included in the single chassis, each of the plurality of compute nodes is configured to communicate with the plurality of storage nodes. A method for accessing user data in a plurality of storage nodes having nonvolatile solid-state memory is also provided.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
A method for managing processing power in a storage system is provided. The method includes providing a plurality of blades, each of a first subset having a storage node and storage memory, and each of a second, differing subset having a compute-only node. The method includes distributing authorities across the plurality of blades, to a plurality of nodes including at least one compute-only node, wherein each authority has ownership of a range of user data.
Abstract:
A method for power sequencing is provided. The method includes determining a chassis configuration prior to blades within slots of the chassis being powered up and generating a power sequence based on the determining. The method includes applying the power sequence to the blades and monitoring the applying and the chassis configuration to achieve an optimal system load.
Abstract:
A method for extending data lifetime for reference in deduplication is provided. The method includes determining that a quantity of user data has at least a threshold amount of data that is re-created in a storage system. The method includes protecting at least portions of the quantity of user data from erasure by garbage collection in the storage system during a predetermined time interval, wherein the protected at least portions are available for data deduplication of further user data in the storage system during the predetermined time interval.
Abstract:
A printed circuit board (PCB) is provided. The PCB includes a connector extending from a surface of the PCB and a bypass feature extending through the PCB. The PCB is constructed so that a first copy of the PCB is configured to be assembled to a second copy of the PCB with the second copy rotated and/or flipped relative to the first copy. An electrical connection to the first copy is accessible via the connector of the first copy, and an electrical connection to the second copy is accessible via the connector of the second copy through the bypass feature of the first copy.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
A method for adjustable error correction in a storage cluster is provided. The method includes determining health of a non-volatile memory of a non-volatile solid-state storage unit of each of a plurality of storage nodes in a storage cluster on a basis of per flash package, per flash die, per flash plane, per flash block, or per flash page. The determining is performed by the storage cluster. The plurality of storage nodes is housed within a chassis that couples the storage nodes as the storage cluster. The method includes adjusting erasure coding across the plurality of storage nodes based on the health of the non-volatile memory and distributing user data throughout the plurality of storage nodes through the erasure coding. The user data is accessible via the erasure coding from a remainder of the plurality of storage nodes if any of the plurality of storage nodes are unreachable.