Abstract:
The present invention provides a semiconductor structure including a substrate, at least one fin group and a plurality of sub-fin structures disposed on the substrate, wherein the fin group is disposed between two sub-fin structures, and a top surface of each sub-fin structure is lower than a top surface of the fin group; and a shallow trench isolation (STI) disposed in the substrate, wherein the sub-fin structures are completely covered by the shallow trench isolation.
Abstract:
A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface, and the isolation structure at two sides of the gate structure has a second top surface. The first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.
Abstract:
A method for fabricating metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a NMOS region and a PMOS region; forming a dummy gate on each of the NMOS region and the PMOS region respectively; removing the dummy gates from each of the NMOS region and the PMOS region; forming a n-type work function layer on the NMOS region and the PMOS region; removing the n-type work function layer in the PMOS region; forming a p-type work function layer on the NMOS region and the PMOS region; and depositing a low resistance metal layer on the p-type work function layer of the NMOS region and the PMOS region.
Abstract:
A fin-shaped field-effect transistor process includes the following steps. A substrate is provided. A first fin-shaped field-effect transistor and a second fin-shaped field-effect transistor are formed on the substrate, wherein the first fin-shaped field-effect transistor includes a first metal layer and the second fin-shaped field-effect transistor includes a second metal layer. A treatment process is performed on the first fin-shaped field-effect transistor to adjust the threshold voltage of the first fin-shaped field-effect transistor. A fin-shaped field-effect transistor formed by said process is also provided.
Abstract:
A method for manufacturing a semiconductor device is provided. A first stack structure and a second stack structure are formed to respectively cover a portion of a first fin structure and a second fin structure. Subsequently, a spacer is respectively formed on the sidewalls of the fin structures through an atomic layer deposition process and the composition of the spacers includes silicon carbon nitride. Afterwards, a interlayer dielectric is formed and etched so as to expose the hard mask layers. A mask layer is formed to cover the second stack structure and a portion of the dielectric layer. Later, the hard mask layer in the first stack structure is removed under the coverage of the mask layer. Then, a dummy layer in the first stack structure is replaced with a conductive layer.
Abstract:
A method for manufacturing semiconductor structures includes providing a substrate having a plurality of mandrel patterns and a plurality of dummy patterns, simultaneously forming a plurality of first spacers on sidewalls of the mandrel patterns and a plurality of second spacers on sidewalls of the dummy patterns, and removing the second spacers and the mandrel patterns to form a plurality of spacer patterns on the substrate.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fm together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
A method of forming a shallow trench isolation structure is disclosed. Hard mask patterns are formed on a substrate. A portion of the substrate is removed, using the hard mask patterns as a mask, to form first trenches in the substrate, wherein a fin is disposed between the neighboring first trenches. A filling layer is formed in the first trenches. A patterned mask layer is formed on the filling layer. A portion of the filling layer and a portion of the fins are removed, using the patterned mask layer as a mask, to form second trenches in the substrate. A first insulating layer is formed on the substrate filling in the second trenches.
Abstract:
The present invention provides a semiconductor structure, including a substrate, having a dielectric layer disposed thereon, a first device region and a second device region defined thereon, at least one first trench disposed in the substrate within the first device region, at least one second trench and at least one third trench disposed in the substrate within the second device region, a work function layer, disposed in the second trench and the third trench, wherein the work function layer partially covers the sidewall of the second trench, and entirely covers the sidewall of the third trench, and a first material layer, disposed in the second trench and the third trench, wherein the first material layer covers the work function layer disposed on partial sidewall of the second trench, and entirely covers the work function layer disposed on the sidewall of the third trench.