Abstract:
A method for analyzing a process output and a method for creating an equipment parameter model are provided. The method for analyzing the process output includes the following steps: A plurality of process steps are obtained. A processor obtains a step model set including a plurality of first step regression models, each of which represents a relationship between N of the process steps and a process output. The processor calculates a correlation of each of the first step regression models. The processor picks up at least two of the first step regression models to be a plurality of second step regression models whose correlations are ranked at top among the correlations of the first step regression models. The processor updates the step model set by a plurality of third step regression models, each of which represents a relationship between M of the process steps and the process output.
Abstract:
A semiconductor structure includes at least two via chains. Each via chain includes at least one first conductive component, at least one second conductive component and at least one via. The first conductive component has an axis along an extending direction of the first conductive component. The via connects the first conductive component to the second conductive component. The via has a center defining a shift distance from the axis of the first conductive component. The shift distances of the via chains are different. A testing method using such a semiconductor structure includes drawing a resistance-shift distance diagram illustrating a relationship between the resistances of the via chains and the shift distances of the via chains. At least one dimensional feature is obtained from the resistance-shift distance diagram.
Abstract:
The invention provides a thermal uniformity compensating method and apparatus. The steps of the method includes: respectively measuring a plurality of first resistances of a plurality of hot spot patterns of a chip over an hot spot effect, wherein a plurality of pattern densities of the hot spot patterns are different; respectively measuring a plurality of second resistances of each of the hot spot patterns of the chip by a plurality of test keys over the hot spot effect, wherein a plurality of distances between the test keys and the corresponding hot spot pattern are different; establishing a look-up information according to the first and second resistances; analyzing a layout data of the chip for obtaining a pattern density information; and generating a calibrated layout data according to the pattern density information and the look-up information.
Abstract:
A method of the measuring a critical dimension of a spacer is provided. The measurement is performed by using several test structures of measuring doping region resistance. Each of the test structure has different space disposed between a first gate line and a second gate line. By measuring a doping region resistance of each test structure, a plot of reciprocal of resistance versus space can be accomplished. Then, making regression of the plot, a correlation can be formed. Finally, a critical dimension of a spacer can be get by extrapolating the correlation back to 0 unit of reciprocal of resistance.
Abstract:
A semiconductor layout structure and a testing method thereof are disclosed. The semiconductor layout structure includes a device under test (DUT), a first testing pad, a second testing pad and a plurality of third testing pads. The DUT includes a plurality of metal-oxide-semiconductor (MOS) transistors. Each of the MOS transistors includes a first terminal, a second terminal and a third terminal. The first testing pad is coupled to the first terminals for being applied a first voltage. The second testing pad is coupled to the second terminals for being applied a second voltage. The third testing pads are respectively coupled to the third testing pads for being applied a third voltage. The third testing pads are electrical insulated from each other. The third voltage is larger than the first voltage and the second voltage.
Abstract:
A capacitor structure includes an insulation layer and a capacitor unit disposed on the insulation layer. The capacitor unit includes a first electrode, a second electrode, a first dielectric layer, and a patterned conductive layer. The second electrode is disposed above the first electrode in a vertical direction. The first dielectric layer is disposed between the first electrode and the second electrode in the vertical direction. The patterned conductive layer is disposed between first electrode and the second electrode, the patterned conductive layer is electrically connected with the first electrode, and the first dielectric layer surrounds the patterned conductive layer in a horizontal direction.
Abstract:
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a first hard mask on the first barrier layer; removing the first hard mask and the first barrier layer to form a recess; forming a second barrier layer in the recess; and forming a p-type semiconductor layer on the second barrier layer.
Abstract:
A semiconductor device includes a III-V compound semiconductor layer, a III-V compound barrier layer, a gate trench, and a p-type doped III-V compound layer. The III-V compound barrier layer is disposed on the III-V compound semiconductor layer. The gate trench is disposed in the III-V compound barrier layer. The p-type doped III-V compound layer is disposed in the gate trench, and a top surface of the p-type doped III-V compound layer and a top surface of the I-V compound barrier layer are substantially coplanar.
Abstract:
A method for fabricating high electron mobility transistor (HEMT) includes the steps of: forming a buffer layer on a substrate; forming a first barrier layer on the buffer layer; forming a second barrier layer on the first barrier layer; forming a first hard mask on the second barrier layer; removing the first hard mask and the second barrier layer to form a recess; and forming a p-type semiconductor layer in the recess.
Abstract:
An enhancement mode high electron mobility transistor (HEMT) includes a group III-V semiconductor body, a group III-V barrier layer and a gate structure. The group III-V barrier layer is disposed on the group III-V semiconductor body, and the gate structure is a stacked structure disposed on the group III-V barrier layer. The gate structure includes a gate dielectric and a group III-V gate layer disposed on the gate dielectric, and the thickness of the gate dielectric is between 15 nm to 25 nm.