Abstract:
Thermodynamic properties of a natural gas stream can be determined in real time utilizing modeling algorithms in conjunction with one or more sensors for quantifying physical and chemical properties of the natural gas. Related techniques, apparatus, systems, and articles are also described.
Abstract:
A system includes a light source, a detector, at least one pressure sensor, and a control unit. The light source emits light at a wavelength substantially corresponding to an absorption line of a target gas. The detector is positioned to detect the intensity of light emitted from the light source that has passed through the target gas. The pressure sensor detects the pressure of the target gas. The control circuit is coupled to the detector and the light source to adjust the modulation amplitude of the light source based on the pressure detected by the at least one pressure sensor. Related systems, apparatus, methods, and/or articles are also described.
Abstract:
The method and system operate to maintain a widely tunable laser (WTL) at a selected transmission wavelength. To lock the WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a transmission line for detection by an etalon fringe detector. Another portion of the beam is routed directly to a laser wavelength detector to determine the power of the beam. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam, then controls the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift attributable to the etalon.
Abstract:
A system and method are disclosed for the detection of water vapor in a natural gas background. The system includes a light source operating in a wavelength range such as, 1.877-1.901 μm, 2.711-2.786 μm, or 920-960 nm, passes through the natural gas to be detected by a detector. In one embodiment, the light source is a tunable diode laser and the moisture level is determined by harmonic spectroscopy. In other embodiments, a VCSEL laser is utilized.
Abstract:
Low concentrations of complex gas mixture components may be detected and quantified using a gas-chromatograph to separate a gas mixture prior to analysis of one or more eluting components using an absorption spectrometer. Substantial reductions in analytical system complexity and improvements in reliability are achieved compared with other commonly used methods for analyzing such complex mixtures.
Abstract:
A system and method are disclosed for the detection of ethylene oxide in a sample of gas, such as air. The system includes a light source operating at a wavelength where molecules typically found within air absorb light at a substantially lower level than ethylene oxide molecules. Exemplary wavelengths are in the range of approximately 1.6-2.2 nullm, and in particular at 1.6 nullm, 1.645 nullm, 1.692 nullm, 2.195 nullm, 2.2 nullm, 2.216 nullm, passes through the sample of gas to be detected by a detector. In one embodiment, the light source is a tunable diode laser or a VCSEL and the ethylene oxide level is determined using harmonic spectroscopy.
Abstract:
A light source module may include a base with a support feature protruding from a surface of the base and securing a light source to direct radiation away from the surface. A lens cells may be attached proximate to the surface, optionally by being secured within a sleeve that is attached at one end to the surface. A multi-conductor part may include electrical conductors and a base temperature sensor that contacts the base. The base temperature sensor may be electrically connected to at least one of the plurality of conductive elements and further connected to an optical ignition safety protection system configured to interrupt current to the light source if the base temperature sensor indicates that a temperature of the light source is outside of a safe range.
Abstract:
A first contact surface of a semiconductor laser chip can be formed to a target surface roughness selected to have a maximum peak to valley height that is substantially smaller than a barrier layer thickness. A barrier layer that includes a non-metallic, electrically-conducting compound and that has the barrier layer thickness can be applied to the first contact surface, and the semiconductor laser chip can be soldered to a carrier mounting along the first contact surface using a solder composition by heating the soldering composition to less than a threshold temperature at which dissolution of the barrier layer into the soldering composition occurs. Related systems, methods, articles of manufacture, and the like are also described.
Abstract:
An optical head assembly for use in a spectrometer is provided that is configured to characterize one or more constituents within a sample gas. The assembly includes a thermoelectric cooler (TEC) having a cold side on one end and a hot side on an opposite end, a cold plate in thermal communication with the cold side of the TEC, a hot block in thermal communication with the hot side of the TEC, a light source in thermal communication with the cold plate such that a change in temperature of the TEC causes one or more properties of the light source (e.g., wavelength, etc.) to change, and an optical element in thermal communication with the cold plate positioned to collimate light emitted by the light source through the sample gas (such that properties of the optical element vary based on a change in temperature of the TEC).
Abstract:
At least one light source is configured to emit at least one beam into a sample volume of an absorbing medium. In addition, at least one detector is positioned to detect at least a portion of the beam emitted by the at least one light source. Further, at least one beam modification element is positioned between the at least one detector and the at least one light source to selectively change at least one of (i) a power intensity of, or (ii) a shape of the beam emitted by the at least one light source as detected by the at least one detector. A control circuit is coupled to the beam modification element. Related apparatus methods, articles of manufacture, systems, and the like are described.