Abstract:
A method for producing metal chloride Mx+Clx− includes reacting metal carbonate in solid form using phosgene, diphosgene and/or triphosgene to form metal chloride Mx+Clx−, wherein the metal M is selected from the group containing alkali metals, alkaline earth metals, Al and Zn, Li and Mg, or Li, for example, and x corresponds to the valency of the metal cations. An apparatus for performing such method is also disclosed.
Abstract:
The present disclosure provides a method for preparing a caprolactam and the method includes steps of subjecting cyclohexanone oxime and sulfuric acid to a Beckmann rearrangement reaction to obtain a rearrangement mixture; neutralizing the rearrangement mixture and extracting the neutralized rearrangement mixture using an organic solvent sequentially; and subjecting the extracted organic solution to a hydrogenation reaction so as to simplify the process to produce a high quality caprolactam.
Abstract:
The present invention relates to a process for preparing acrylic acid from formaldehyde and acetic acid, comprising reacting formaldehyde and acetic acid via an aldol condensation in a reaction unit comprising n reaction zones arranged in series, each comprising an aldol condensation catalyst, where n is at least 2, and wherein at least one stream leaving a reaction zone, before being fed into the reaction zone immediately downstream, is mixed with a stream comprising formaldehyde and optionally comprising acetic acid. The present invention further relates to an apparatus for preparing acrylic acid from formaldehyde and acetic acid and to the use of this apparatus.
Abstract:
Disclosed is a hydrocarbon conversion process that is less energy intensive than comparable processes. The hydrocarbon conversion process is particularly desirable for converting alkanes, such as methane into C2+ olefins, such as ethylene and propylene, particularly with increasing selectivity to ethylene production. It is also desirable for effectively removing a C2 composition (i.e., ethane, ethylene and/or acetylene) produced from the catalytic conversion of hydrocarbon comprised of C2+ olefins. In addition, the hydrocarbon process is desirable for providing a substantially non-cryogenic separation of the desired C2 compositions from the hydrocarbons (e.g., methane) present in the reaction mixture.
Abstract:
An apparatus for use in heterogeneous catalytic reactions comprising a column reactor comprising a plurality of trays mounted one above another, each adapted to hold a predetermined liquid volume and a charge of particles of a solid catalyst thereon; means for introducing a liquid phase reactant above the uppermost tray; means for introducing a vapour phase reactant below the lowermost tray; means for removing a liquid phase post-reaction stream from below the lowermost tray; means for removing a vapour phase post-reaction stream from above the uppermost tray; vapour upcomer means associated with each tray adapted to allow vapour to enter that tray from below; undertow means associated with each tray adapted to remove liquid from that tray and the column reactor before being introduced into the column reactor at a lower tray; means for temporarily directing said liquid removed from a tray to bypass at least one lower tray and be reintroduced to the column reactor at a tray located below said at least one bypassed tray; means for removing the liquid and catalyst from said at least one bypassed tray: and means for replacing a liquid and catalyst inventory on said at least one bypassed tray.
Abstract:
A method and device for limiting the degassing of tritiated waste issued from the nuclear industry are provided. The method reduces an amount of generated tritiated hydrogen (T2 or HT) and/or tritiated water (HTO or T2O) including at least one piece of tritiated waste from the nuclear industry. The method includes placing the package in contact with a mixture including manganese dioxide (MnO2) combined with a component that includes silver; and placing the package in contact with a molecular sieve.
Abstract:
A method and device for limiting the degassing of tritiated waste issued from the nuclear industry are provided. The method reduces an amount of generated tritiated hydrogen (T2 or HT) and/or tritiated water (HTO or T2O) including at least one piece of tritiated waste from the nuclear industry. The method includes placing the package in contact with a mixture including manganese dioxide (MnO2) combined with a component that includes silver; and placing the package in contact with a molecular sieve.
Abstract:
The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.
Abstract:
At least one method to efficiently produce alkylene oxide from partial oxidation of hydrocarbons using a high efficiency heterogeneous catalyst in a fixed bed enclosed within a reaction vessel, and a reaction vessel constructed to facilitate the same.
Abstract:
A process and apparatus for the (co) polymerization of styrene. The process is carried out by employing a liquid polymerization reaction mixture that includes styrene, in a mechanically stirred reactor in the form of a vessel comprising a side wall having the shape of a cylinder of revolution with a vertical axis (A), a bottom head and a top head that are joined to the side wall, the vessel being provided with a mechanical stirring device comprising (i) a central shaft of vertical axis coincident with the axis (A), connected to a drive system comprising a motor for rotating the central shaft, (ii) at least one baffle attached to the vessel, which process is characterized in that the baffle is away from the side wall of the vessel and takes the form of a cylinder of vertical axis and of rhomboidal cross section.