Abstract:
Reactive nanocomposites, foams, and structures comprising functionalized metal nanoparticles that are incorporated into a fluorinated polymer matrix using an in-situ polymerization process and methods of making and using the same. The reactive nanocomposites, foams, and structures according to the present invention demonstrate enhanced mechanical properties due to the direct chemical integration of the nano-metal fuel particles into the fluoropolymer matrix. In addition, the reactive nanocomposites, foams, and structures may be processed using conventional polymer processing and may be used to fabricate materials such as reactive liners, casings, and other components and inserts. The intense heat produced during reaction may further be used in a variety of applications such as disinfection, decontamination, and/or destruction.
Abstract:
A substrate having an arrangement of self-assembling magnetic domains and a method of fabrication therefor. In some embodiments, a substrate is patterned with a plurality of chemically contrasted alignment features, and a block copolymer having a magnetic component and a non-magnetic component is deposited onto the substrate. The block copolymer self-assembles into a sequence of magnetic domains responsive to the alignment features. The period of the alignment features is between about 2 times and about 10 times the period of the magnetic domains.
Abstract:
This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
Abstract:
The present invention relates to a method for treating a block copolymer solution, wherein the method comprises: providing a solution comprising a block copolymer in a non aqueous solvent; and, treating the solution to remove metals using an ion exchange resin. The invention also relates to a method of forming patterns using the treated block copolymer.
Abstract:
Block copolymers can be self-assembled and used in methods as described herein for sub-lithographic patterning, for example. The block copolymers can be diblock copolymers, triblock copolymers, multiblock copolymers, or combinations thereof. Such methods can be useful for making devices that include, for example, sub-lithographic conductive lines.
Abstract:
A zinc or zinc alloy coated steel sheet has a surface-treatment film formed thereon in a coating weight per one surface of 100 to 600 mg/m2. The surface-treatment film is obtained by applying, onto a surface of the zinc or zinc alloy coated steel sheet, the surface-treatment solution prepared by mixing the following components at specific ratios, the surface-treatment solution having pH of 8 to 10: a silane compound (A) having a hydrolyzable group, obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2), and a chelating agent (a3); a zirconium carbonate compound (B); a vanadate compound (C); a nitric compound (D); and water, and by subsequently heating and drying the surface-treatment solution thus applied.
Abstract:
Slurry which contains a) from (50) to (80)% by weight of refractory particles having an average particle size of from (0.5) m to (150) m, b) from (5) to (35)% by weight of aluminum oxide particles having an average particle diameter of less than (300) nm and c) from (5) to (35)% by weight of water and d) a pH of from (5) to (12). Process for producing the slurry using a dispersion, and also the dispersion itself. Process for producing a casting mold, and also the casting mold itself.
Abstract:
This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.
Abstract:
A method for locally forming a smooth surface on frosted glass includes steps of: a) preparing a piece of frosted glass; b) locally coating the frosted glass with a sealant; and c) such forming the sealant that has a smooth surface. The smooth surface of the frosted glass allows a video camera to capture clear images therethrough so as to prevent blurred images caused by micro-roughness on a surface of the frosted glass.
Abstract:
This invention relates to heterogenous pore polymer nanotube membranes useful in filtration, such as reverse osmosis desalination, nanofiltration, ultrafiltration and gas separation.