Abstract:
The present invention provides a fuel cell vehicle, particularly a fuel cell vehicle equipped with a moisture remover that removes moisture from an air conditioner evaporator. The fuel cell vehicle includes: a fuel cell stack as a power supplier; an electric heater operated by power from the fuel cell stack; a blower fan for providing air to the electric heater; an air channel configured to supply the air passing through the electric heater to an air conditioner evaporator; and a controller for controlling the operations of the electric heater and the blower fan, whereby moisture is removed from the air conditioner evaporator by supplying air heated by the electric heater to the air conditioner evaporator. The fuel cell vehicle effectively removes moisture from an air conditioner evaporator, solves the problem of a bad smell in the related art, and further removes the oxygen and the stack voltage which remain in the cathode, such that it is possible to avoid cathode oxygen depletion of the related art.
Abstract:
An electric or hybrid-electric vehicle is provided with vehicle-mounted solar cells capable of generating electrical power. The power from the array is directed to vehicle systems according to a pre-determined algorithm intended to most effectively extend the vehicle range when operated under electric power. Power from the solar cells is directed by a controller, and may be applied to directly charge the batteries or to power electric power receiving devices, for example, to control cabin temperatures, depending on factors including the state of charge of the batteries, whether or not, the vehicle is parked and the current cabin temperature. The controller is also capable of controlling and managing the operating voltage of the solar cells to ensure optimal power extraction from the cells.
Abstract:
An operation managing server for charging stations each of which has a charger and accepts a charging request for charging a vehicle battery of a user through the charger at a charging station, including a charging request accepting unit that accepts a charging request from a user when the user makes the charging request, and a charging time estimating unit that estimates a charging time required to charge the vehicle battery of the user on the basis of past charger using data of the user, wherein when there is any charging request from a next user, the charging request accepting unit accepts the charging request concerned while reflecting the estimated charging time of the former user.
Abstract:
Battery charging control methods, electrical vehicle charging methods, battery charging control apparatus, and electrical vehicles are described. In one arrangement, battery charging control methods include accessing price information for electrical energy supplied by an electrical power distribution system and controlling an adjustment of an amount of the electrical energy from the electrical power distribution system used to charge a rechargeable battery at different moments in time using the price information. Other arrangements are described.
Abstract:
A method and apparatus that allows the end user to optimize the performance of an all-electric or hybrid vehicle and its charging system for a desired mode of operation is provided. The system of the invention includes multiple charging/operational modes from which the user may select. Each charging/operational mode controls the cut-off voltage used during charging and the maintenance temperature of the battery pack.
Abstract:
An apparatus comprising battery pack installed in an electric vehicle, a power supply coupled to the rechargeable battery pack, the power supply operable to provide a charge voltage to perform charging operations on the rechargeable battery pack;, a heater to heat a fluid to be circulated through the rechargeable battery pack, the fluid thermally coupled to a plurality of battery cells within the rechargeable battery pack, a switching circuit, the switching circuit coupled to the heater and to the power supply, the switching circuit operable in a first mode to couple the source of electrical power to the heater without coupling the source of electrical power to the rechargeable battery pack, the switching circuit operable in a second mode to couple a source of electrical power external to the electric vehicle to the power supply to form a recharging circuit in order to perform charging operations on the rechargeable battery pack.
Abstract:
A method of controlling and a system for charging a battery power supply unit for a bicycle electronic device, even in critical temperature conditions, is provided. Heat energy is supplied to the power supply unit when its temperature is lower than or equal to a lower temperature threshold within a closed charging temperature range characteristic of the power supply unit.
Abstract:
A method for operating a device in which typically a very high current is generated when the device is turned on compared to the rated current, e.g. an analogue operated PTC heating device for a mobile device, such as a vehicle, is disclosed. In this method, the power on the device is increased in a defined limited manner or in a ramp-like manner in the connection phase to avoid a high current when the device is switched on.
Abstract:
When the main battery of an electric vehicle is being charged and any one of an air-conditioner ON/OFF switch, a pre-air-conditioning preference ON/OFF switch, an external-input-controlled timer pre-air-conditioning preference ON/OFF switch, and an external-input-controlled pre-air-conditioning ON/OFF switch is turned on, a charging control device causes the maximum output current from the battery charger to be distributed between the battery and a motor-driven air conditioner or other electric load at a certain ratio on a real-time basis or at a start time established by a pre-air-conditioning timer or a timer in an air-conditioner controller. Therefore, the motor-driven air conditioner or other electric load can be operated and a charging current can be supplied to the battery at the same time even if the rated output capacity of the charger is relatively small. Consequently, the motor-driven air conditioner or other electric load can efficiently be operated while the battery is being charged.
Abstract:
An on-vehicle electronic device includes a main body which is fastened to a vehicle and has a first terminal, and an operation unit which is detachably mounted in the main body and which has a second terminal electrically connected to the first terminal when the operation unit is mounted in the main body. The main body includes a reference power source applying a reference voltage to the first terminal, and a voltage detection unit for detecting a voltage applied to the first terminal. The main body further includes a mounting detection unit. The mounting detection unit determines, based on a difference between a first detection voltage detected by the voltage detection unit when the operation unit is mounted and a second detection voltage detected by the voltage detection unit when the operation unit is not mounted, whether or not the operation unit is mounted and electrically connected to the main body via the first and second terminals.