Abstract:
A method of controlling a vehicle including providing a system having a plurality of brakes and a curve detecting mechanism. Each brake of the plurality of brakes is configured to slow rotation of a respective wheel. The method further includes detecting a curve in a forward travel path of the vehicle using the curve detecting mechanism. At least two brakes but fewer than all of the plurality of brakes are pre-filled in response to the detection of a curve.
Abstract:
The invention relates to a method and a device for performing open-loop or closed-loop control of the driving stability of a vehicle and for avoiding collisions with an object located in the traffic lane. The invention also relates to a closed-loop driving stability controller. The method according to aspects of the invention comprises: determining based on environmental signals whether a critical situation in terms of driving dynamics, in particular an imminent collision, exists, calculating an avoidance path if a critical situation in terms of driving dynamics exists, determining based on a plurality of input variables pressures for individual brakes of the vehicle, and activating preparatory measures of the driving dynamics regulator, in particular dynamic switching over of closed-loop control parameters if the critical situation in terms of driving dynamics exists. The device and the closed-loop driving stability controller are suitable for carrying out the method.
Abstract:
A method for improving the efficiency of a driving dynamics regulating system which intervenes in the driving operation in critical driving situations by automatic braking intervention at selected wheels. It is possible for the reaction speed of the brake system 3 to be considerably increased if, before the actual regulating intervention, the imminent critical driving situation is already detected and a slight preparatory brake pressure is already built up at least one wheel at which a future regulating intervention is expected.
Abstract:
In a method for determining at least one, preferably however several driver-independent interventions in a vehicle system, a risk calculator is used, whose input is supplied with predetermined vehicle data, ambience data, current vehicle and driver data, occupant data or data of persons outside the vehicle, or similar data. The risk calculator issues an evaluation of the risk situation of the vehicle and its occupants or the persons outside the vehicle based on said data and, in accordance with the evaluation and optional additional criteria or weightings, outputs driving signals controlling actuators that modify or trigger the driving behavior of the vehicle and/or the occupant protection system and/or protection means for other traffic participants (pedestrians, cyclists, etc.) in such a way that maximum protection is obtained for the persons and the vehicle according to a priority control.
Abstract:
A method of guiding a multitrack vehicle on a curved path which is defined by the vehicle driver by way of a set steering angle or the like, a curved-path signal representing this desired curved path being guided in a form appropriately revised by an electronic control unit to a steering actuator influencing the steering angle of at least one steerable vehicle wheel is provided. The curved-path signal formed of the set steering angle and of the vehicle speed and, in particular, representing the yaw rate can be used in the sense of a pilot control not only for the appropriate controlling of the steering actuator but also for the appropriate change of the longitudinal force at the wheels of at least one vehicle side, so that, in addition to or instead of the setting of the steering angle, in addition or by itself, a longitudinal force can be applied to at least one vehicle wheel in order to travel the desired curved path. Preferably, the yawing moment fraction, which can be produced by the steering angle, and the yawing moment fraction, which can be produced by the application of a longitudinal force in the form of a braking force and/or a driving force, can be changed in a mutually opposite manner.
Abstract:
In a method for determining at least one, preferably however several driver-independent interventions in a vehicle system, a risk calculator is used, whose input is supplied with predetermined vehicle data, ambience data, current vehicle and driver data, occupant data or data of persons outside the vehicle, or similar data. The risk calculator issues an evaluation of the risk situation of the vehicle and its occupants or the persons outside the vehicle based on said data and, in accordance with the evaluation and optional additional criteria or weightings, outputs driving signals controlling actuators that modify or trigger the driving behavior of the vehicle and/or the occupant protection system and/or protection means for other traffic participants (pedestrians, cyclists, etc.) in such a way that maximum protection is obtained for the persons and the vehicle according to a priority control.
Abstract:
The present device relates to a system and method for controlling the driving stability of a vehicle utilizing variables that characterize a driving situation of the vehicle and are detected in a process. The system and method include determining an expected future behavior of the vehicle, checking the expected future driving behavior with respect to a critical driving situation and executing a vehicle intervention during stable driving conditions to prevent the vehicle from entering a critical driving situation. The intervention may include a brake intervention or an engine intervention.
Abstract:
A vehicle turning motion control apparatus includes a turning condition sensing section to sense a turning condition of the vehicle; and a vehicle deceleration control section to initiate a deceleration control to decelerate the vehicle when the turning condition exceeds a deceleration start threshold. The control apparatus further includes a running state sensing section configured to sense a running state of the vehicle, and a threshold setting section configured to set the deceleration start threshold in accordance with the running condition.
Abstract:
A method of operating a hydraulic safety system 38 includes determining a relative roll angle, determining a relative a slip angle, determining a yaw rate and determining a pressure build rate for the hydraulic safety system 38 in response to a relative roll angle, the yaw rate, slip angle, and yaw rate. The method further includes determining a precharge pressure level in response to the relative roll rate, the slip angle and the yaw rate and controlling the safety system 38 in response to the precharge pressure level.
Abstract:
A method of guiding a multitrack vehicle on a curved path which is defined by the vehicle driver by way of a set steering angle or the like, a curved-path signal representing this desired curved path being guided in a form appropriately revised by an electronic control unit to a steering actuator influencing the steering angle of at least one steerable vehicle wheel is provided. The curved-path signal formed of the set steering angle and of the vehicle speed and, in particular, representing the yaw rate can be used in the sense of a pilot control not only for the appropriate controlling of the steering actuator but also for the appropriate change of the longitudinal force at the wheels of at least one vehicle side, so that, in addition to or instead of the setting of the steering angle, in addition or by itself, a longitudinal force can be applied to at least one vehicle wheel in order to travel the desired curved path. Preferably, the yawing moment fraction, which can be produced by the steering angle, and the yawing moment fraction, which can be produced by the application of a longitudinal force in the form of a braking force and/or a driving force, can be changed in a mutually opposite manner.