Abstract:
A microstructure and the method for making the same are disclosed herein. The microstructure has structural members, at least one of which comprises an intermetallic compound. In making such a microstructure, a sacrificial material is employed. After completion of forming the structural layers, the sacrificial material is removed by a spontaneous vapor phase chemical etchant.
Abstract:
A method of producing a MEMS device provides an apparatus having structure on a first layer that is proximate to a substrate. The apparatus has a space proximate to the structure. The method adds doped material to the space. The doped material dopes at least a portion of the first layer.
Abstract:
A method of dividing a wafer having a plurality of micro electro mechanical systems and a plurality of streets for partitioning the micro electro mechanical systems formed on the front surface of a wafer substrate, the method comprising a protective tape affixing step for affixing a protective tape to the front surface of the wafer; a cut groove-forming step for forming a cut groove by cutting the wafer having the protective tape affixed thereto along the streets from the back surface of the wafer substrate, leaving a cutting margin having a predetermined thickness on the front surface side of the wafer substrate; and a cutting step for cutting the cutting margins by applying a laser beam to the cutting margins of the cut grooves formed along the streets.
Abstract:
A method of depositing polymer thin films on a MEMS device having a wafer stack includes depositing one or more protection films on a polymer thin film layer on the wafer stack, fabricating the MEMS device, and removing the one or more protection films.
Abstract:
A process for making a microdevice that includes the steps of providing a base member and selectively electroforming a support member for supporting a microplatform with respect to the base member. The process also includes the steps of selectively electroforming the microplatform and forming a flexible hinge member for hingedly connecting the microplatform to the support member and allowing relative movement of the microplatform with respect to the support member. This microdevice, when compared to prior art devices, can have improved mechanical strength, rigidity, low deformation, and high planarity.
Abstract:
A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
Abstract:
The invention relates to a microbeam oscillator. Tuning of the oscillator is carried out by addition or subtraction of material to an oscillator member in order to change the mass of the oscillator member.
Abstract:
The present invention, by improving the silicon surface/bulk micromachining technology using two steps of silicon etch mask patterning and four steps of silicon etching, fabricates a structure which has vertically offset electrodes and consequently fabricates an electrostatic vertical and torsional actuator using one single-crystalline silicon wafer. According to the method of the present invention, the problems of the prior art that used a number of silicon wafers and single/double SOI wafers, or combining of these wafers with additional deposited poly-crystalline silicon films, may be resolved.
Abstract:
A method of fabricating MicroElectroMechanical systems. The method includes: providing a substrate in which electrical interconnections and a sacrificial layer have been formed, forming a release mask including germanium, etching exposed sacrificial material, and removing the release mask. The performance of MicroElectroMechanical devices is improved by 1) integrating electronics on the same substrate as the mechanical elements, 2) increasing the proximity of electronics and mechanical elements, 3) increasing the undercut of a release etch to reduce or eliminate etch holes or to allow circuit elements to be undercut, 4) increasing the yield and reliability of the MEMS release processes. In addition to released mechanical structures, the invention also provides a means for forming circuits such as a bandgap reference as a released MEMS element. Forming a bandgap circuit as a released MEMS element may improve reference voltage performance by allowing resistive heating of the circuit region to a constant, elevated temperature independent of the substrate temperature.
Abstract:
A bonding pad structure, in particular for a micromechanical sensor, includes a substrate, an electrically insulating sacrificial layer provided on the substrate, a patterned conductor path layer buried in the sacrificial layer, a contact hole provided in the sacrificial layer, and a bonding pad base, composed of an electrically conductive material. The bonding pad base has a first region extending over the sacrificial layer, and a second layer in contact with the conductor path region and extending through the contact hole. A protective layer is provided at least temporarily on the sacrificial layer in a specific region beneath and around the bonding pad base to prevent underetching of the sacrificial layer beneath the bonding pad base during etching of the sacrificial layer in such a way that the substrate and/or the conductor path is exposed.