Abstract:
A method for manufacturing an optical fiber preform, including: a) providing a lining tube as a substrate tube, and doping and depositing by a PCVD or an MCVD process; b) in the reacting gas of silicon tetrachloride and oxygen, introducing a fluorine-containing gas for fluorine doping, introducing germanium tetrachioride for germanium doping, ionizing the reacting gas in the lining tube through microwaves to form plasma, depositing the plasma on the inner wall of the lining tube in the form of glass; c) after the completion of deposition, processing the deposited lining tube into a solid core rod by melting contraction through an electric heating furnace; d) sleeving the solid core rod into a pure quartz glass jacketing tube and manufacturing the two into an optical fiber preform; and e) allowing the effective diameter d of the optical fiber preform to become between 95 and 205 mm.
Abstract:
In general, in a first aspect, the invention features photonic crystal fibers that include a core extending along a waveguide axis, a confinement region extending along the waveguide axis surrounding the core, and a cladding extending along the waveguide axis surrounding the confinement region, wherein the cladding has an asymmetric cross-section.
Abstract:
A nonlinear optic article for difference frequency generation is provided. The article comprises a wave mixer configured to generate a difference frequency mixing signal, the wave mixer comprising a compound made from one or more noncentrosymmetric crystal-glass phase-change materials comprising one or more chalcogenide compounds that are structurally one dimensional and comprise a polymeric 1∞[PSe6−] chain or a polymeric 1∞[P2Se62−] chain, wherein the one or more chalcogenide compounds are capable of difference frequency generation.
Abstract:
There is provided a thermal sensing fiber grid, including a plurality of rows and columns of thermal sensing fibers, each of which includes a semiconducting element that has a fiber length and that is characterized by a bandgap energy corresponding to a selected operational temperature range of the fiber in which there can be produced a change in thermally-excited electronic charge carrier population in the semiconducting element in response to a temperature change in the selected temperature range. There is included at least one pair of conducting electrodes in contact with the semiconducting element along the fiber length, and an insulator along the fiber length. An electronic circuit is provided for and connected to each thermal sensing fiber for producing an indication of thermal sensing fiber grid coordinates of a change in ambient temperature.
Abstract:
An optical tag (200) comprises a chalcogenide glass corner-cube reflector (202) bonded to a silicon MEMS modulator (206) by means of a glass material (214) having a lower softening temperature than that of the reflector. The tag is provided with AR coatings (210, 212). The invention provides a robust, integrated and compact optical tag having a wide field of view and low manufacturing costs.
Abstract:
A chalcogenide multi-clad optical fiber having a core, a first cladding and one or more subsequent claddings including a chalcogenide glass. The optical fiber may be capable of transmitting visible and inferred light and may be used for a wide variety of semiconductor applications.
Abstract:
There is provided a thermal sensing fiber grid, including a plurality of rows and columns of thermal sensing fibers, each of which includes a semiconducting element that has a fiber length and that is characterized by a bandgap energy corresponding to a selected operational temperature range of the fiber in which there can be produced a change in thermally-excited electronic charge carrier population in the semiconducting element in response to a temperature change in the selected temperature range. There is included at least one pair of conducting electrodes in contact with the semiconducting element along the fiber length, and an insulator along the fiber length. An electronic circuit is provided for and connected to each thermal sensing fiber for producing an indication of thermal sensing fiber grid coordinates of a change in ambient temperature.
Abstract:
A process for producing an optical glass fiber from crystal-glass phase material. In one embodiment, the process includes the step of providing a molten crystal-glass phase material in a container, wherein the temperature of the molten crystal-glass phase material is at or above the melting temperature of the molten crystal-glass phase material, Tm, to allow the molten crystal-glass phase material is in liquid phase. The process further includes the step of cooling the molten crystal-glass phase material such that the temperature of the molten crystal-glass phase material, T1, is reduced to below Tm to cause the molten crystal-glass phase material to be changed from the liquid phase to a viscous melt. Moreover, the process has the step of pulling a glass fiber of the crystal-glass phase material from the viscous melt, wherein T1 satisfies the following relationship: Tv
Abstract:
A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
Abstract:
This invention pertains to a glass fiber, a Raman device and a method. The fiber is a hollow core photonic bandgap chalcogenide glass fiber that includes a hollow core for passing light therethrough, a Raman active gas disposed in said core, a microstructured region disposed around said core, and a solid region disposed around said microstructured region for providing structural integrity to said microstructured region. The device includes a coupler for introducing at least one light signal into a hollow core of a chalcogenide photonic bandgap fiber; a hollow core chalcogenide photonic bandgap glass fiber; a microstructured fiber region disposed around said core; a solid fiber region disposed around said microstructured region for providing structural integrity to said microstructured region; and a Raman active gas disposed in the hollow core. The method includes the steps of introducing a light beam into a hollow core chalcogenide photonic bandgap glass fiber filled with a Raman active gas disposed in the core, conveying the beam through the core while it interacts with the gas to form a Stokes beam of a typically higher wavelength, and removing the Stokes beam from the core of the fiber.