Abstract:
The process of the invention describes a set of steps for preparing a solid lignocellulosic biomass type feed, alone or mixed with a liquid hydrocarbon phase with a view to supplying a unit for gasification of said feed. The various steps include drying, torrefaction, milling and constituting a suspension of particles of biomass in a hydrocarbon cut.
Abstract:
A gasification burner for combustion of a fuel, comprises a barrel having a front and a back, wherein exhaust gas produced by combustion exits at an outlet, a first air inlet into the barrel and a fuel inlet into the barrel, each positioned adjacent the back, wherein air at a first flow rate and fuel at a fuel flow rate are deliverable at the first air inlet and the fuel inlet, respectively, and a secondary air link operatively connected a second air inlet. The second air inlet is positioned closer to the front of the barrel than the first air inlet, and air at a second flow rate is deliverable at the second air inlet from the secondary air link and into the combustion chamber. A slag trap is operatively connected to the barrel so as to be able to receive slag generated from combustion of the fuel in the barrel, and the slag trap is closer to the back than the second air inlet. The second air inlet is offset with respect to the front from the secondary air link.
Abstract:
A waste recycling apparatus includes a temporary storage tank, a pyrolyzing furnace, a first blower, a material storage tank, a second blower, and a rotary valve and a magnetic device. The temporary storage tank carries a waste. The pyrolyzing furnace decomposes the waste into a non-iron material and an iron material. The first blower produces winds to blow the waste into the pyrolyzing furnace. The material storage tank stores the non-iron material and the iron material and includes an outlet. The second blower produces winds to blow the non-iron material and the iron material into the material storage tank. The rotary valve controls a discharge quantity of the non-iron material and the iron material. The magnetic device is installed on a side of the outlet, and the magnetic device attracts the iron material to separate the non-iron material and the iron material. The waste recycling apparatus can recycle wastes automatically.
Abstract:
A reactor (107) for pyrolysis of carbonizable plastic and rubber materials is disclosed including at least an earlier stage reaction chamber (401) and a later stage reaction chamber (105), in which the earlier stage reaction chamber receives the materials for pyrolysis, and the later stage reaction chamber receives treated materials from the earlier stage reaction chamber for subsequent pyrolysis, and the reactor (107) includes a three-way valve (407) for directing the gaseous pyrolysis products from the later stage reaction chamber to one of three pathways, each to a different destination.
Abstract:
An installation for drying organic matter, especially kitchen and food wastes or other biological matter, including matter that contains packaging residues, napkins, straws or the like. The installation comprises the following components: (a) a vacuum mixer (M) having a closable charging opening for introducing the organic matter and a closable discharge opening, disposed at the bottom or laterally towards the bottom, for the dried matter, (b) at least one vacuum pump (VP) for evacuating the air in the mixer to generate the vacuum, the pump being connected to at least one evacuation tube mounted above the maximum filling level in the housing of the mixer (M), (c) a heater (H) for heating the organic matter, (d) at least one condenser (K), connected to the air evacuation duct (AL) of the vacuum pump (VP) and having a cooling unit (KA) connected thereto to condense the evacuated air, and (e) a discharge duct (AW) for the condensate obtained from the evacuated air by cooling in the condenser (K).
Abstract:
To provide a cement burning apparatus and a method of method of drying high-water-content organic waste capable of drying organic waste with high water content precluding the possibility of explosion; not incurring decreased thermal efficiency of a cement kiln; and more efficiently drying organic waste with high water content. The cement burning apparatus 1 comprises a dryer 6, to which combustion gas is fed from an exhaust gas passage, which runs from an outlet duct of a calciner 4 to an outlet duct of a preheater 3 of a cement kiln 2, for drying high-water-content organic waste of which water content is 40 mass percent or more. As the dryer 6, a grinding-type flash dryer, which directly contacts the combustion gas G with the organic waste W and dries the organic waste W while grinding it, can be used. Since oxygen concentration in the combustion gas extracted from the range described above is low, there is no danger of explosion, and temperature thereof is 450 to 900° so that the organic waste may sufficiently be dried. The cement burning apparatus may further comprise the second exhaust gas passage 8 for returning gas exhausted from the dryer 6 to the above-mentioned range.
Abstract:
A system for heat recovery and pressure control including: a fresh air heat exchanger with at least one fresh air heat exchanger conduit, a pre-heater heat exchanger with at least one pre-heater heat exchanger conduit, and a proportioning valve coupled to the conduits. The fresh air heat exchanger is adapted to warm the fresh air by transferring heat from the at least one fresh air heat exchanger conduit. The pre-heater heat exchanger is adapted to pre-heat the contaminated air by transferring heat from the at least one pre-heater heat exchanger conduit. The conduits are adapted to receive hot air and transfer heat from the hot air. The proportioning valve is adapted to control the flow of hot air through the conduits.
Abstract:
A waste treatment plant (1) comprises an incinerator unit (30) and an autoclave unit (9) and operates such that steam for the autoclave is generated from heat in the incinerator and contaminated water from the autoclave is used to control the temperature in the incinerator, the contamination being destroyed in the process. Exhaust gas from the incinerator is used to reduce the water content of waste treated in the autoclave. Steam generated by the incinerator is available for plant washing operations, to wash bins that supplied waste to the plant before the bins are returned.
Abstract:
A glycerin burning system having a specialized atomizing burner capable of combusting a continuous feed of crude or pure glycerin. The burner includes a two-fluid mixing nozzle. The nozzle has an internal distributor which mixes two fluid feed streams as the fluids are expelled through an orifice. The distributor has channels which cause the air to swirl before mixing with the glycerin. An impingement pin is provided outside the orifice to diffuse the mixture and reduce combustion air speed. To improve performance, the burner's air feed line is subjected to combustion chamber to preheat the air passing through the feed line before the air is mixed with the glycerin.
Abstract:
Waste processing system including a shredder, a grinder and a steam explosion device such as a cooking extruder. The waste processing system is used to process raw waste, such as consumer waste, into an end product such as pellets. One potential use for these pellets is pyrolization to form biogas. Because of the uniformity composition of the processing waste (see DEFINITIONS section), imparted by the shredder and grinder, and because of the uniformity of distribution of plastic in the processing waster, imparted by the steam explosion processing, the end-product made by systems according to the present invention are superior with respect to several physical characteristics and especially well suited for pyrolization to make biogas.