Abstract:
A robotic device includes a housing configured to house a mobile device. The robotic device also includes an articulating image director aligned with a field of view of a camera of the mobile device. The housing of the robotic device is positioned at an angle to provide a forward view or rear facing view to the camera via the articulating image director.
Abstract:
A system comprising a self-propelled device and an accessory device. The self-propelled device includes a spherical housing, and a drive system provided within the spherical housing to cause the self-propelled device to roll. When the self-propelled device rolls, the self-propelled device and the accessory device magnetically interact to maintain the accessory device in contact with a top position of the spherical housing relative to an underlying surface on which the spherical housing is rolling on.
Abstract:
A self-controlled device maintains a frame of reference about an x-, y- and z-axis. The self-controlled device processes an input to control the self-propelled device, the input being based on the x- and y-axis. The self-propelled device is controlled in its movement, including about each of the x-, y- and z-axis, based on the input.
Abstract:
A system includes digital servo modules and building blocks that are assemblable in several permutations to construct robotic figures. A central controller communicates with the modules via communication channels, each subdivided into sub-channels. The system utilizes a discovery process wherein the central controller periodically transmits a discovery signal in each sub-channel until a newly attached module transmits a reply to the discovery signal. The central controller transmits position commands to the recognized servo modules and receives position feedback from the recognized modules. The system enables someone to easily program a robotic figure via: a learned motion mode, wherein joints are manipulated and the central controller records a trajectory for each servo module; a user motion capture mode, wherein user motions are captured via camera to generate servo trajectories; and an animation builder mode, wherein a virtual representation of the robotic figure can be manipulated on screen to generate servo trajectories.
Abstract:
Systems and methods for haptic remote control gaming are disclosed. In one embodiment a portable multifunction device receives information from a remotely controllable device. The portable multifunction device can be operable as a remote control for the remotely controllable device. The portable multifunction device may be a smartphone, a tablet computer, or another suitable electronic device. The portable multifunction device can determine a haptic effect based at least in part on the information received from the remotely controllable device. The portable multifunction device may generate a signal configured to cause an actuator to output the determined haptic effect. The portable multifunction device can output the signal.
Abstract:
A system comprising a self-propelled device and an accessory device. The self-propelled device includes a spherical housing, and a drive system provided within the spherical housing to cause the self-propelled device to roll. When the self-propelled device rolls, the self-propelled device and the accessory device magnetically interact to maintain the accessory device in contact with a top position of the spherical housing relative to an underlying surface on which the spherical housing is rolling on.
Abstract:
A system may include a plurality of grid elements, an analytic system, and a control system. The plurality of grid elements are installed in a dynamic driving area in an attraction and are configured to perform based on command instructions received from the control system to control the movement of a vehicle disposed on the plurality of grid elements. The analytic system may be configured to track, via one or more sensors, vehicle information and to send the vehicle information to the control system via a communication module, and the control system may be configured to receive the vehicle information, to determine, via one or more processors, which of the grid elements to actuate and a corresponding manner of actuation based on a desired movement of the vehicle, and to send command instructions including performance data to each of the grid elements identified for actuation.
Abstract:
A system comprising a self-propelled device and an accessory device. The self-propelled device includes a spherical housing, and a drive system provided within the spherical housing to cause the self-propelled device to roll. When the self-propelled device rolls, the self-propelled device and the accessory device magnetically interact to maintain the accessory device in contact with a top position of the spherical housing relative to an underlying surface on which the spherical housing is rolling on.
Abstract:
A self-propelled device includes a spherical housing and an internal drive system including one or more motors. The internal drive system acts to provide power to an interior surface of the spherical housing, thereby causing the self-propelled device to move. A biasing mechanism is coupled to the internal drive system and includes a spring and a spring end in contact with the inner surface of the spherical housing. An accessory component magnetically interacts with the biasing mechanism through the spherical housing such that as the self-propelled device rotates along, the accessory component remains stable with respect to the biasing mechanism.