Abstract:
A mobile terminal is disclosed. The mobile terminal can transmit/receive information or a signal to/from a cooking apparatus, improve user convenience, remotely monitor a state of the cooking apparatus, and receive a control command with respect to the cooking apparatus.
Abstract:
The present invention advantageously provides a motorized roller shade that includes a shade tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the shade tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket.
Abstract:
A system for mounting to a vehicle including a user interface element and for controlling a transmitter device configured to send an expected transmission to receiving device is provided. The system includes a transceiver. The system further includes an interface for receiving a first signal from the user interface element. The system yet further includes a processor configured to establish a bi-directional data communication link between the transceiver and the transmitter device. The processor is further configured to cause the transceiver to send a second signal to the transmitter device via the bi-directional data communication link based upon the first signal received at the interface. The processor is yet further configured to format the second signal so that the transmitter device will send the expected transmission to the receiving device.
Abstract:
A control method of the present disclosure causes a computer of an information apparatus to: display an operation icon for causing an operation screen for an electric shutter device to be displayed; display the operation screen which includes a shutter image representing a shutter of the electric shutter device when selection of the operation icon is sensed; when a swipe operation is sensed, output a movement control command for moving the shutter in a swipe direction, and move the shutter represented in the shutter image in accordance with a swipe amount of the swipe operation; and in a case where stop information is received and the shutter represented in the shutter image is varied into a closed state, return the shutter represented in the shutter image in a second direction opposite to a first direction which is a moving direction of the shutter represented in the shutter image.
Abstract:
A compact, register-based, eight-bit virtual machine is realized on a resource-constrained device such as, for example, an IR remote control device. The IR remote control device includes a script interpreter, as well as loader API functionality and API functionality to support communication over a bidirectional link. The functionality of the remote control device is customized by loading either a machine code API routine and/or a script API routine onto the remote control device via the bidirectional link. A script is loaded via the bidirectional link and is stored in program memory. Once loaded, the script is interpreted by the virtual machine, thereby calling API functionalities provided, and thereby causing the remote control device to have a desired customized function. Providing the virtual machine on all the members of a family of remote control devices allows the same script to run on any remote control device of the family.
Abstract:
Methods and systems are described herein for remotely or wirelessly controlling access to dwellings, buildings and/or properties. In one aspect, an electronic access system comprises: a plurality of independent access control devices (115, 125, 135, 145, 155, 165) for controlling entry and/or exit at respective access points and at least one remote control device (170) adapted to wirelessly transmit control signals to the access control devices (115, 125, 135, 145, 155, 165) and wirelessly receive feedback signals from the access control devices. The at least one remote control device (170) is adapted to indicate status information based on receipt of the feedback signals. The plurality of access control devices (115, 125, 135, 145, 155, 165) may be adapted to operate mechanical, electrical or electro-mechanical devices for enabling and/or disabling access in response to receipt of a wireless control signal.
Abstract:
A device includes a keypad that further includes first keys related to selecting television channels associated with a set top box and a second key related to requesting a television listing. The device further includes an infra-red transceiver that transmits a request for television listing information to a set top box based on user selection of the second key, and receives television listing data, from the set top box, that includes program information related to a plurality of channels over a period of time. The device also includes a color display unit that displays the television listing data.
Abstract:
A marine device, such as a trolling motor, a trim tab, a downrigger or a sonar device, is operated based upon commands generated by a wireless remote control device. The marine device is connected to a controller that provides commands to the marine device. The controller communicates with the remote control through a bidirectional wireless communication link to receive commands and to provide status information on the operation of the motor. The remote control includes user inputs for generating commands that are sent wirelessly to the controller to control operation of the marine device. The remote control also includes a display for displaying real time status information that is received wirelessly from the controller.
Abstract:
The present invention is directed toward a system and process that controls a group of networked electronic components using a multimodal integration scheme in which inputs from a speech recognition subsystem, gesture recognition subsystem employing a wireless pointing device and pointing analysis subsystem also employing the pointing device, are combined to determine what component a user wants to control and what control action is desired. In this multimodal integration scheme, the desired action concerning an electronic component is decomposed into a command and a referent pair. The referent can be identified using the pointing device to identify the component by pointing at the component or an object associated with it, by using speech recognition, or both. The command may be specified by pressing a button on the pointing device, by a gesture performed with the pointing device, by a speech recognition event, or by any combination of these inputs.
Abstract:
A hand-held device having a touch sensitive surface uses a relative distance from an origin location to each of a plurality of touch zones of the touch sensitive surface activated by a user to select a one of the plurality of touch zones as being intended for activation by the user.