Abstract:
A field emission cold cathode sends forth uniform emission over the entire emission area and realizes, when applied to a flat screen display device and the like, a uniform brightness of images over the entire display area, providing a high quality field emission type cold cathode. An electron tube is equipped with the cold cathode. The cold cathodes structurally prevent a prolonged electric discharge with the use of trenches. Non-uniformity of resistance, resulting from the difference in extension of the depletion regions in each block divided by the trenches, can be prevented by an arrangement of blocks in which each block divided by trenches is placed to have a prescribed distance from an adjacent block, which makes emission currents in all blocks within the formed emitter area uniform at the time of normal operation, and thereby a good form in which depressions in the block corner sections are well suppressed can be obtained.
Abstract:
The invention relates to the structure of a field emitter device, to the method of fabricating a field emitter device and to the use of the field emitter device in the technical field of flat panel displays. The field emission device comprises an array (1) of widely-spaced tips (2) for emitting electrons and a perforated extracting electrode (3) facing the array of tips. An individual series resistor is formed by each of said tips itself. The widely-spaced tips are not surrounded by a layer of electrically insulating material. The tips are not surrounded by an insulating layer and the tip end is not surrounded by a gate or extraction electrode. This avoids failures like shorts between the cathode electrode and the gate or extraction electrode which could occur due to inaccurate coating or etching processes, and enhances the reliability and the life-time of the array of tips. To fabricate the field emission device, a micromechanically manufactured array (1) of widely-spaced tips (2) and a micromechanically manufactured perforated extracting electrode (3) are provided. The outer sides of the perforated extracting electrode are bonded to the array in a way that the perforated extracting electrode is facing the array. With the array of widely-spaced tips and the perforated extracting electrode being fabricated separately and bonded together subsequently, both the number of process steps required for each of the two parts and the manufacturing process costs are reduced.
Abstract:
A cold cathode field emission display is described. A key feature of its design is that each individual microtip has its own ballast resistor. The latter is formed from a resistive layer that has been interposed between the cathode line and the substrate. When openings for the microtips are formed in the gate line, extending down as far as the resistive layer, an overetching step is introduced. This causes the dielectric layer to be substantially undercut immediately above the resistive layer thereby creating an annular resistor positioned between the gate line and the base of the microtip.
Abstract:
Rod-shaped or cylindrical structures in the nm range on a substrate of silicon are manufactured. A first cylinder of silicon is selectively epitaxially deposited in the hole of a mask layer of oxide, and the mask layer is removed. The silicon is then oxidized to form an oxide layer having such a thickness that a thinner, second cylinder of silicon having practically the same height as the first cylinder remains. In a last step, this oxide layer is removed, so that the second cylinder forms a freestanding silicon rod on the surface of the substrate.
Abstract:
A baseplate for a flat panel display comprising relatively thick semiconductor substrate, wherein the semiconductor substrate is a macro-grain polycrystalline substrate, which is amorphized by ion implantation or reformed by recrystallization, to obscure the grain boundaries, thereafter redundant circuitry may be fabricated thereon to further enhance product yield.
Abstract:
A band for securing a catheter or similar device to a limb of a human comprising a stretchable primary strap adapted to encircle a limb. A part of the strap is made of a soft looped fabric and the strap also carries a male Velcro-type fastening material which cooperates with the looped fabric to enable the strap to be secured in place about the limb. A secondary strap made of a flexible material is secured, hooks up, intermediate its ends to the central portion of the primary strap on the looped fabric. The secondary strap is made of a male Velcro-type fastening material, and each end of the secondary strap is designed to be looped over and encircle the catheter or similar device and attach to the looped fabric to hold the catheter or similar device securely in place on the limb.
Abstract:
Diamond microtip field emitters are used in triode vacuum microelectronic devices, sensors and displays. Diamond triode devices having integral anode and grid structures can be fabricated. Ultra-sharp tips are formed on the emitters in a fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.
Abstract:
A manufacturing method for a field emission display includes the steps of (1) forming a conductive film on a substrate that is to be a base plate, the conductive film being for forming a cathode electrode; (2) applying, on the conductive film, a positive resist, which is a photosensitive material; (3) exposing the positive resist to light, so as to form openings that correspond in a shape of emitters, the light being (a) emitted from a light source, (b) paralleled so that rays thereof have even light intensity distribution, and (c) directed into a micro lens array so as to be condensed in interior of the photosensitive material; and (4) forming the emitters respectively in the openings. This arrangement provides a manufacturing method for a field emission display, the method capable of highly accurately and highly productively sharp emitters aligned orderly, without a complicate manufacturing step and a complicate optical system.
Abstract:
A method of manufacturing a field emission device having emitter shapes, comprise the steps of forming a first original plate having a major surface provided with emitter shapes, by cutting a surface portion of a base material, forming a first material layer on the major surface of the first original plate on which the emitter shapes are provided; separating the first material layer from the first original plate, thereby obtaining a second original plate having recesses onto which the emitter shapes on the first original plate are transferred, forming a second material layer on a major surface of the second original plate on which the recesses are provided; and separating the second material layer from the second original plate, thereby to obtain a substrate having projections portions onto which shapes of the recesses of the second original plate are transferred.
Abstract:
A field emission device having improved properties and which finds use in display devices, such as a flat panel displays. Known devices and displays suffer from problems such as complexity of fabrication and limited color gamut. The present device provides a field emission backplate which is made from a substantially semiconductor based material and has a plurality of grown tips. The device also includes at least one electro-luminescent or photo-luminescent material having a fluorescent material such as a fluorescent dye doped material chemically attached thereto.