Abstract:
A radiation source includes a vacuum chamber, means for injecting an optical wave, a cold source for emitting electrons, a power supply, an anode for emitting X-rays, and at least one window through which the X-rays exit. A light source delivers the optical wave, and the cold source includes at least one substrate with a conducting surface and is subjected to an electric field. The cold further includes a photoconductive element in which the current is controlled approximately linearly by the illumination and at least one electron-emitting element, the photoconductive element electrically connected in series between an emitting element and a conducting surface. Current photogenerated in the photoconductive device is equal to that emitted by the emitter or the group of emitters with which it is associated, and the emitted stream of X-rays is approximately linearly dependent on the illumination.
Abstract:
Fan beams of radiation are output from a multiplicity of radiation sources. Radiation is output simultaneously only from a part of the radiation sources having irradiation ranges that neither overlap with each other nor are adjacent to each other. Image correction data corresponding to each group of radiation sources is obtained by sequentially outputting radiation to the radiographic image detector while the groups of radiation sources are sequentially switched without setting a subject. An effective area that has a value higher than a predetermined threshold value is determined for each image correction data. Radiation is sequentially output to the radiographic image detector in a state in which a subject is set while groups of radiation sources are switched. Radiation image data obtained based on the effective area, and which corresponds to each of the groups of radiation sources, is corrected based on the image correction data.
Abstract:
There are provided an X-ray generating apparatus capable of switching X-ray beams of high energy and low energy to each other at high speed, and an X-ray CT apparatus capable of performing high-speed and high-quality multi-energy imaging by using the same. The X-ray generating apparatus is constructed by an X-ray tube 9 having two anodes 200a, 200b, a rotational anode 204 for radiating X-ray from an X-ray focal point by electron beams emitted from filaments of these cathodes, and two grid electrodes 202a and 202b for controlling emission of the electron beams, a tube voltage generator 9a and a tube voltage controller 9d1 for controlling an X-ray condition, a filament heater 9b and a tube current controller 9d2, a grid voltage generator 9c and a grid opening/closing controller 9d3, and a grid switching unit 9e. High energy X-ray and low energy X-ray are switched and emitted to an examinee every adjacent projection angles, thereby collecting projection data.
Abstract:
A method of imaging an object that includes directing a plurality of x-ray beams in a fan-shaped form towards an object, detecting x-rays that pass through the object due to the directing a plurality of x-ray beams and generating a plurality of imaging data regarding the object from the detected x-rays. The method further includes forming either a three-dimensional cone-beam computed tomography, digital tomosynthesis or Megavoltage image from the plurality of imaging data and displaying the image.
Abstract:
A CT system includes a rotatable gantry having an opening for receiving an object to be scanned and an x-ray source coupled to the gantry and configured to project x-rays through the opening. The x-ray source includes a target, a first cathode configured to emit a first beam of electrons toward the target, a first gridding electrode coupled to the first cathode, a second cathode configured to emit a second beam of electrons toward the target, and a second gridding electrode coupled to the second cathode. The system includes a generator configured to energize the first cathode to a first kVp and to energize the second cathode to a second kVp, and a detector attached to the gantry and positioned to receive x-rays that pass through the opening. The system also includes a controller configured to apply a gridding voltage to the first gridding electrode to block emission of the first beam of electrons toward the target, apply the gridding voltage to the second gridding electrode to block emission of the second beam of electrons toward the target, and acquire dual energy imaging data from the detector.
Abstract:
The invention relates the field of electron emitter of an X-ray tube. More specifically the invention relates to flat thermionic emitters to be used in X-ray systems with variable focus spot size and shape. The emitter provides two main terminals (3, 5) which form current conductors and which support at least two emitting portions (7, 9). The emitting portions are structured in a way so that they are electron optical identical or nearly identical increasing the emergency operating options in case of emitter damage.
Abstract:
It is described an X-ray tube (100, 200) for moving a focal spot within a wide range. The X-ray tube (100, 200) comprises a first electron source (105), which is adapted to generate a first electron beam projecting along a first beam path (107a, 107b), a second electron source (110), which is adapted to generate a second electron beam projecting along a second beam path (112a, 112b) and an anode (120), which is arranged within the first beam path (107a, 107b) and within the second beam path (112a, 112b) such that on a surface (121) of the anode (120) the first electron beam (307a) generates a first focal spot (308) and the second electron beam (412a) generates a second focal spot (413). The X-ray tube (100, 200) further comprises a common deflection unit (130, 330, 430), which is adapted to deflect the first (307a) and the second electron beam (412a), such that the positions of the first (308) and the second focal spot (413) is shifted. The electron sources (105, 110) may be arranged within a linear array allowing for a simple mechanical support of the X-ray sources.
Abstract:
An x-ray tube has a number of emitters that generate respective electron beams, and has a common anode at which the electron beams strike on a surface to generate x-rays. A high x-ray dose power with a long lifespan are achieved while being able to quickly vary the x-ray dose power by using a superimposed intensity distribution from the x-ray beams, which is measured by a detector, to optimize the x-ray beams on the surface.
Abstract:
An X-ray tube system comprising: at least one filament adapted to produce two electron beams when electrified; at least two anodes spaced from each other along a first direction that each comprises a face that receives an electron beams from the at least one filament at a focal point and produces x-ray cone beams responsive thereto, the x-ray beams being directed in a same direction perpendicular to the first direction; a collimator that collimates the cone beams such that the beams are asymmetric, with the side of each beam distal from the other beam having a smaller beam angle than the side proximal to the other beam.
Abstract:
A control apparatus for controlling a multi radiation generating apparatus having a plurality of radiation generating devices which irradiate a two-dimensional sensor with radiation sets the intensity of radiation with which the plurality of radiation generating devices irradiate the two-dimensional sensor based on information about a part or physique of a patient, which is input by an input device.