Abstract:
An assembly for electron beam tomography affords continuous and simultaneous recording of two-dimensional slice images of an object in different irradiation planes with a high temporal and spatial resolution. Targets are penetrated by openings of a given width and with a regular arrangement in the circumferential direction. The openings in the targets are respectively situated on a path formed by the cross section of the shell of the electron beam cone with the respective target. The successive targets in the beam direction respectively are arranged with a small angular offset with respect to the optical axis to the respective target situated in front, and so an electron beam circulating along the shell of the electron beam cone successively irradiates the material webs between the openings of all targets with at least part of its cross section and an X-ray detector arc is arranged for each target in coplanar radial fashion in front of or behind the respective target.
Abstract:
A computed tomography apparatus (10) includes spaced radiation sources (82, 84), such as anodes, which each propagate a cone-beam of radiation (40, 50) into an examination region (14). A detector (22) detects radiation which has passed through the examination region. An attenuation system (55) interposed between the radiation sources and the examination region for cone-angle dependent filtering of the cone beams. The attenuation system allows rays which contribute little to a reconstructed image to be attenuated more than rays which contribute more.
Abstract:
The present disclosure describes a self-contained irradiator comprising at least one X-ray source inside a shielded enclosure, the one or more sources each operable to emit X-ray flux across an area substantially equal to the proximate facing surface area of material placed inside the enclosure to be irradiated. The irradiator may have multiple flat panel X-ray sources disposed, designed or operated so as to provide uniform flux to the material being irradiated. The advantages of the irradiator of the present disclosure include compactness, uniform flux doses, simplified thermal management, efficient shielding and safety, the ability to operate at high power levels for sustained periods and high throughput.
Abstract:
An energy beam is irradiated onto a rotating anticathode so as to heat a portion irradiated by the energy beam under the condition that a vapor pressure at equilibrium state of the portion is set to 0.1 Torr or more, thereby generating an X-ray. The portion irradiated by the energy beam is kept at the rotating anticathode by a centrifugal force to the portion it a direction outward from a surface of the portion.
Abstract:
A flash radiography diode includes a cathode and an anode. The cathode includes a frustum member with a bore extending through the frustum member. The anode is a tapered anode made of an electrically conductive material and oriented toward the cathode. The anode and the cathode are housed in a chamber with a gap between the anode and the cathode. The cathode is configured to emit electrons to the tapered anode, which electrons strike the anode and create an anode plasma. The anode plasma creates X rays which propagate from the anode.
Abstract:
The present invention is directed to an X-ray tube that has an electron source in the form of a cathode and an anode within a housing. The anode is a thin film anode, so that most of the electrons which do not interact with it to produce X-rays pass directly through it. A retardation electrode is located behind the anode and is held at a potential which is negative with respect to the anode and slightly positive with respect to the cathode.
Abstract:
The aim of the invention is to produce an x-ray computed tomography arrangement in which there is no axial offset between the path of the focal spot and the x-ray detector arc. Said aim is achieved by: —arranging the x-ray detector arc and the target around the examination cross-section within a radiation plane such that the x-ray focal spots generated by the deflected electron beam of the electron beam generator lie within an axial plane, the radiation plane, along with the active detector elements; —disposing the x-ray detector arc behind the target in a radial direction such that each imaginary x-ray extending from a focal spot position on the target to a detector element of the x-ray detector arc penetrates the target, which lies in front of the point of incidence on the x-ray detector arc in the direction of radiation, in the area in which the target and the x-ray detector arc angularly overlap; —producing the target from a target member which is preferably made of a material that has a low atomic number and great heat storage capacity or thermal conductance; —applying an electron-decelerating material layer, preferably made of a refractory material that has a high atomic number, to the side of the target member which faces the electron beam.
Abstract:
A target assembly for generating x-rays includes a target substrate, and an emissive coating applied to a portion of the target substrate, the emissive coating comprising one or more of a carbide and a carbonitride.
Abstract:
A conical anode X-ray source with a spot size approximately one tenth of the size of existing mammography devices. The source produces the same or higher radiance than the prior art. It also produces almost no high-energy Bremstrahlung. The electron beam is directed into a conical anode so that it strikes the reflecting surface at an angle which produces total internal reflection. The X-rays emitted via the reflection would ordinarily exit the small end of the conical anode in a diverging conical pattern—producing an undesirable “ring” configuration at the image plane. A homogenizing optic is therefore preferably added to the small end of the conical anode. The homogenizing optic is sized to reflect the X-rays emerging from the conical anode and thereby create a uniform “spot” source at the far end of the homogenizing optic.
Abstract:
An improved electron bombardment device includes a first tubular member for containing a target material and a second tubular member surrounding the first tubular member, leaving a space between the first and second tubular members. In an embodiment of the invention, the second tubular member is an electron emitting material, and the bombardment device includes a voltage application means for accelerating emitted electrons from the second tubular member towards the first tubular member. In a further embodiment of the invention, the second tubular member comprises a thermionic electron emitting material. In an alternative embodiment, the second tubular member comprises a field electron emitting material.