Abstract:
Embodiments of a system and method for transmitting data from an access point in a multiple user multiple input multiple output (MU-MIMO) system are provided. A first indication of signal quality (ISQ) is received at the access point from a first station and a second ISQ is received from a second station. The access point sets a first power level and a first modulation and coding scheme (MCS) for transmission of a first aggregated media access control (MAC) protocol data unit (A-MPDU) to the first station as a function of the first ISQ and an amount of payload data corresponding to the first A-MPDU. The access point also sets a second power level and a second MCS for transmission of a second A-MPDU as a function of the second ISQ and an amount of payload data corresponding to the second A-MPDU.
Abstract:
In one embodiment, a method is disclosed in which physical layer information is received from one or more nodes along a path in a network. Self-interference information is also received from the one or more network nodes. The presence of self-interference along the path is identified and a transmission strategy of the one or more nodes is altered based on the identified self-interference and the received physical layer information.
Abstract:
Embodiments of the disclosure provide a method and apparatus for scheduling a UE, wherein a BS serves the UE and employs a non-normal subframe to coordinate inter-cell interference, and wherein transmission power in the non-normal subframe is lower than that in a normal subframe. In the method according to embodiments of the present invention, channel quality information for the non-normal subframe may be adjusted based on information on transmission power of downlink packets and reference signals; and a target MCS may be determined according to the adjusted channel quality information, so that the BS schedules the UE based on the target MCS in the non-normal subframe.
Abstract:
A base station that implements an improved link adaptation process that takes into account the fact that a certain reference signal (e.g., CSI-RS) may be seen as interference by certain wireless communication devices (WCDs). Accordingly, when the base station schedules a data transmission for the WCD to occur in a particular TTI and the base station is scheduled to transmit the CSI-RS during the same TTI, the base station will tend to select a more robust MCS for the data transmission to the WCD to counter effect the possible interference caused by the CSI-RS.
Abstract:
A method for selection of a particular modulation coding selection (MCS) from a plurality of available MCS selects a particular MCS after obtaining SNR_d, SNR_high, SNR_low, and if SNR_d>SNR_high, selecting the highest available MCS, and if SNR_d SNR_d>SNR_low, selecting MCS based on computing the function/table for each MCS according to the formula: f(MCS)=(1−PER(length_packet,MCS,SNR_d))/length_packet(packet_size,MCS), and thereafter selecting the MCS that maximizes the f(MCS) function. Further the neighboring MCS values are characterized for throughput in a throughput characterization step, and compared in throughput to the above determined throughput. In an embodiment of the invention, SNR_high, SNR_low are found by finding the SNR that satisfies: PER(length_packet,MCS_lowest,SNR_low)=PER_thresh PER(length_packet,MCS_highest,SNR_high)=PER_thresh Where PER_thresh is a design parameter, and MCS_lowest is the lowest MCS and MCS_highest is the highest available MCS.
Abstract:
Systems and methods are disclosed herein for reducing power consumption and/or decreasing latency for a wireless device in a wireless communications system. In particular, the systems and methods disclosed herein are particularly beneficial for Machine Type Communication (MTC) devices, but are not limited thereto. In some embodiments, a method of operation of a node of a wireless communications system comprises determining a Modulation and Coding Scheme (MCS) that is optimized for MTC for one of an uplink from a MTC device to a base station and a downlink from the base station to the MTC device, and using the MCS with respect to the one of the uplink from the MTC device to the base station and the downlink from the base station to the MTC device. By optimizing the MCS, power consumption by the MTC device and/or latency can be reduced.
Abstract:
LWA (LTE/WLAN Aggregation) is a tight integration at radio level which allows for real-time channel and load aware radio resource management across WLAN and LTE to provide significant user perceived throughput (UPT) improvement. When enabling LWA, packets are routed to a base station (eNB) for performing PDCP functionalities as an LTE PDU. Afterwards, the eNB can dispatch the PDU either delivered over LTE link or WLAN link. The UPT improvement depends on how the eNB dispatches the PDU over LTE link or WLAN link. In one novel aspect, the eNB can acquire channel information, load information, and throughput estimation regarding with WLAN link and LTE link. As a result, the eNB can optimize UPT and LWA PDU dispatching algorithm.
Abstract:
Systems and Methods for controlling an interleaver are disclosed. Generally, a first and second signal are received, wherein the first and second signals are selected from the group consisting of a signal to noise ration signal, a data rate signal, and a bit error rate signal. An interleaver control signal is then generated based on the first and second signals.
Abstract:
Bursty interference or puncturing may be identified, either by a user equipment (UE) or by a base station. In response, a protection scheme may be applied to protect communications from the bursty interference or puncturing. The protection scheme may include using both time and frequency interleaving of code blocks in the communications. The protection scheme may also include modifying the modulation and coding scheme (MCS), coding rate, precoding matrix index (PMI), or rank indicator (RI) used in the communications. The protection scheme may also include using a universal low-density parity check (LDPC) code in the transmission of the communications.
Abstract:
A MIMO ARC transmitter derives demux streams (15, 20) carrying different parts of the information, at given data rates, processes each demux stream by coding and modulation (25, 30) before transmission over the channels, and varies (50, 165) the coding or modulation according to channel conditions, and controls the data rates (50, 155) according to conditions of the channels independently of the variations in coding and modulation. The separate control of processing and of data rates for each demux stream can provide a better balance of rapid response to changing conditions and efficiency in less rapidly changing conditions. The frequency of updating the processing can be limited since these take more time to adapt in the receiver. Sensitivity to rapid changes can be achieved by the data rate changes since these involve less overhead than changes in the processing.