Abstract:
Performing a real-time application on a mobile device, involving communication of audio/video packets with a remote device. The mobile device may initially communicate the audio/video packets on a first communication channel with the remote device. During the real-time communication, the mobile device may determine if no packets have been received by the mobile device from the remote device for a first threshold period of time. If no packets have been received by the mobile device from the remote device for the first threshold period of time, the mobile device may establish a second communication channel for transmission of the audio/video packets with the remote device. In response to using the second communication channel, the mobile device may modify a resolution or bit rate of the audio/video packets transmitted to the remote device.
Abstract:
A method for minimizing datalink message propagation time comprises determining whether a datalink TPDU ready for transmission requires an acknowledgement; transmitting the TPDU, starting a transport retry timer, and setting a transmission count to one, when acknowledgement is required; determining whether acknowledgement is received after transmitting the TPDU; determining whether the retry timer has expired if acknowledgement not received; determining whether a hold mode is in effect when the retry timer has expired; determining whether a transport inactivity timer has expired when the hold mode is in effect; determining whether the hold mode is still in effect when the inactivity timer has not expired; when the hold mode is no longer in effect, incrementing the transmission count by one; and retransmitting the datalink TPDU and restarting the retry timer, when the transmission count is less than a predetermined maximum value and the inactivity timer has not expired.
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. A PLC device may include a delayed correlation detector and a cross-correlation detector operating in concert to facilitate preamble detection in one implementation.
Abstract:
Embodiments of wireless adaptive control message apparatus, systems, and methods are described generally herein. Other embodiments may be described and claimed.
Abstract:
A system and method for information delivery with multiple point transmission are provided. A method for detecting lost packets is provided. The method includes initiating a timer for a received packet at a receiving transmission point, where the timer is set according to a time value associated with the received packet. The method also includes determining that a delivery of the received packet has failed according to the timer elapsing, and transmitting a lost packet report to a primary transmission point that distributed the received packet to the receiving transmission point.
Abstract:
Various embodiments implemented on a mobile communication device (e.g., a multi-SIM-multi-active communication device) mitigate degraded transmit performance typically experienced by a lower-priority subscription during a Tx collision event in which a higher-priority subscription receives a shared Tx resource of the mobile communication device to the exclusion of the lower-priority subscription. Specifically, in various embodiments, a processor of the mobile communication device may determine when an upcoming transmission of the lower-priority subscription will collide with a scheduled transmission of the higher-priority subscription (i.e., may determine when a Tx collision event will occur between the subscriptions) and may implement one or more Tx collision management strategies in response to determining that the lower-priority subscription's upcoming transmission will collide with a transmission of the higher-priority subscription, thus improving the lower-priority subscription's overall performance.
Abstract:
Various embodiments implemented on a mobile communication device (e.g., a multi-SIM-multi-active communication device) mitigate degraded transmit performance typically experienced by a lower-priority subscription during a Tx collision event in which a higher-priority subscription receives a shared Tx resource of the mobile communication device to the exclusion of the lower-priority subscription. Specifically, in various embodiments, a processor of the mobile communication device may determine when an upcoming transmission of the lower-priority subscription will collide with a scheduled transmission of the higher-priority subscription (i.e., may determine when a Tx collision event will occur between the subscriptions) and may implement one or more Tx collision management strategies in response to determining that the lower-priority subscription's upcoming transmission will collide with a transmission of the higher-priority subscription, thus improving the lower-priority subscription's overall performance.
Abstract:
Provided are a packet processing apparatus and method for detecting a duplicate acknowledgement (ACK) packet. The packet processing apparatus initiates a session and then detects a retransmission packet and a duplicate ACK packet from input/output packets using statistic information related to packet retransmission. Accordingly, unnecessary traffic generated regardless of a user's intension can be blocked.
Abstract:
One embodiment allocates and uses exclusive and overlapping transmission units in a network. One embodiment includes sending information, from a first network node in a network, during an exclusive transmission unit, wherein the exclusive transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send info nation without another assigned network transmission unit providing overlapping time slot-frequency interference from another network node communicating in the network. One embodiment includes sending information, from the first network node, during an overlapping transmission unit, wherein the overlapping transmission unit includes one or more wireless time slot-frequency pairings assigned to the first network node to send information, with the overlapping transmission unit overlapping in time slot-frequency with one or more other assigned network transmission units that will cause interference if simultaneously used.
Abstract:
A method and apparatus for hybrid automatic repeat request (HARQ) transmission are disclosed. If a packet has not been successfully transmitted, it is determined whether an HARQ early termination condition is met. If the HARQ early termination condition is met, the HARQ process is terminated and the packet is discarded at the HARQ level. The HARQ early termination condition is met if a positive acknowledgement (ACK) has not been received until the number of retransmissions reaches a predetermined limit that is dynamically configured based on channel condition, measurement, etc. Alternatively, the HARQ early termination condition is met if a transmit power required for successful transmission of the packet is much higher than an actual transmit power. Alternatively, the HARQ early termination condition is met if a transport format combination (TFC) selected for retransmission is different from an optimal TFC. A higher layer may be notified of the early HARQ termination.