Abstract:
A combination automatic document feeder and scanner operates so as to detect automatically an over-sized sheet of media. A linear image sensor detects motion of the oversized document as it is being fed into the scanner in a portrait orientation. A control algorithm responsive to the image sensor functions so those first and second portions of the over-sized sheet are successively registered over the transparent platen of the scanner and scanned. The resulting digital images of the first and second portions of the over-sized sheet are digitally stitched together using a control algorithm that causes 1) a front portion of the oversized document to be advanced a sufficient distance in a forward direction to place the front portion inside the scanning area of the line scanner but not a sufficient distance to place the rear portion of the oversized document inside the scanning area of the line scanner; 2) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the front portion of the oversized document; 3) the line scanner to move to a target area below the front portion of the oversized document for capturing a line of indicia information disposed on the front portion of the oversized document; 4) the front portion of the oversized document to advance in a direction perpendicular to the motion of the line scanner in a series of predetermined exposure intervals to determine the distance the oversized document traveled into the scanning area of the line scanner; 5) the line scanner to move in a perpendicular direction to the oversized document to capture indicia information disposed on the rear portion of the oversized document; 6) the front portion indicia information to be combined with the rear portion indicia information without any substantial discontinuity a memory, faxed or printed.
Abstract:
A method is described for exposing both sides of a light sensitive sheet such as a printed circuit board panel according to imaging data. The method uses a device that has an optical system for scanning the sensitive sheet by one or more beams. The optical system scans both sides with the scan lines on one side mutually positioned with respect to the scan lines on the other side. According to one implementation, the optical system includes two optical scanning units driven by a single source, with a switch alternating the beam from the source to one then the other optical scanning unit.
Abstract:
A device is described for exposing both sides of a light sensitive sheet such as a printed circuit board panel according to imaging data. The device comprises an optical system for scanning the sensitive sheet by one or more beams. The optical system scans both sides with the scan lines on one side mutually positioned with respect to the scan lines on the other side. According to one implementation, the optical system includes two optical scanning units driven by a single source, with a switch alternating the beam from the source to one then the other optical scanning unit.
Abstract:
The image recording method and apparatus deflect light from a group of two-dimensionally disposed light source elements to move an image formed on a recording medium in accordance with a movement of the recording medium, or shift modulation data of the group of two-dimensionally disposed light source elements in a first moving direction of the recording medium on the group of two-dimensionally disposed light source elements in synchronism with the movement of the recording medium, and thereby have the image remain stationary relatively to the recording medium in the main scanning direction, as well as shift sequentially modulation data of the group of two-dimensionally disposed light source elements in a direction opposite to a second moving direction of the optical system in synchronism with a movement of the optical system in the auxiliary scanning direction, and thereby having the image also remain stationary relatively to the recording medium in the auxiliary scanning direction.
Abstract:
An apparatus and method for controlling an image recording device. The apparatus includes an acousto-optic deflector that deflects a beam of light so as to write a sub-scan comprising a predetermined number of picture elements. The image recording device is arranged to write a plurality of sub-scans side by side in a substantially contiguous manner. The apparatus also includes a component that commences sub-scans, a start of sub-scan detector that detects when the light beam is directed towards a start of sub-scan position, and an end of sub-scan detector that detects when the beam of light is directed towards an end of sub-scan position. A timing logic controller generates a start reference signal representing a desired position for the start of a sub-scan. A controller compares an output of the start of sub-scan detector with respect to the start reference signal. The controller also adjusts a frequency range of a chirp applied to the acousto-optic deflector while keeping a start time of the chirp constant so as to cause an arrival time of the light beam at the start of sub-scan detector to coincide with the start reference signal. A picture element rate controller adjusts a rate at which picture elements are written such that a final one of the picture elements is written a predetermined period before the light beam is directed towards the end of sub-scan position.
Abstract:
A multi-lenses optical device with high resolution is provided for converting an optical image into electronic signals. The multi-lenses optical device includes a focusing unit for focusing a plurality of sections of the optical image to correspondingly generate a plurality of focused image sections with the same ratio and having the same optical path length, a photoelectric conversion unit for converting the plurality of focused image sections into the electronic signals, a switching unit for sequentially having each one of the focused image sections or the optical image sections selected and having the selected image section transmitted to the photoelectric conversion unit, and a light-reflecting unit mounted between the photoelectric conversion unit and the focusing units for transmitting the plurality of image sections.
Abstract:
A cascade scanning optical system which includes a plurality of laser scanning optical systems each emitting a laser beam to scan a surface of a member, and a beam splitter positioned in an optical path between the plurality of laser scanning optical systems and the member such that a first laser beam which has passed through the beam splitter and a second laser beam which has been reflected by the beam splitter proceed to the surface on a common line thereon in respective ranges of the common line. Each of the plurality of laser scanning optical systems is desinged as a telecentric system.
Abstract:
The present invention provides an image recording apparatus comprising a document size detection sensor 103 for recognizing a size of an image to be recorded, an image input section 101 for reading and storing therein the image to be recorded, a paper feeder (not shown herein) for storing therein and feeding recording paper having a specified size, an image forming section 108 for forming an image on recording paper fed from the paper feeder, an image processing section 106 for dividing a read image to two portions based on a result of detection by the document size detection sensor 103 when a size of the image to be recorded is larger than recording paper having a specified size and executing image processing for displacing a central position of each image so that an edge section of each image will be aligned to an edge of a binding space of each discrete sheet of recording paper, and an image output section 107 for outputting an image processed by the image processing section 108.
Abstract:
An image input device is provided in which an optical deflector is positioned to divide the image of an object into a plurality of sub-images and to deflect the sub-images to an image sensor via an imaging lens. The images sensed by the image sensor are stored in a memory and combined by an image processor to form a composite image of the object. A hybrid zoom arrangement allows the magnification of an image on a display to be adjusted both mechanically and electronically. Techniques and circuitry for image processing allow a user to remove undesirable motion blur from the real time image and allow an input image to be patch-wise warped into an output image. An optical encoder for accurately determining the position of a deflector such as a mirror has also been provided.
Abstract:
A system for writing geometric structures on a photosensitive substrate including a modulated laser beam source, a focusing lens, a deflector for producing a scanning action between the light source and the lens, and a device for mechanically moving the surface relative to the laser beam. Compressed data for use in writing the geometric structures is read out of a memory into a data delivery circuit such that the data is formatted to have both beam power and position information. A modulator logic circuit operates to call up the data from the data delivery circuit, form a modulation drive signal based on the power information, and delay the modulation drive signal based the position data. The modulator logic circuit thus operates to vary the modulation drive signal to begin or end exposure along the scan lines with greater resolution or pixel density by at least a factor of four more than the resolution or spacing density between adjacent scan lines. The scan lines are arranged within stripes, and adjacent stripes preferably are made to overlap such that the stripes are blended in the overlap according to a predetermined stepwise changing function.