Abstract:
A multilayer printed wiring board having a wiring lead-out port has a signal circuit conductor perfectly covered by an earth circuit in its inside and a wiring lead-out port. A signal circuit conductor having a branch pattern is preferable. A large number of products can be easily manufactured with good size reproducibility. The multilayer printed wiring board is manufactured by selectively etching the copper of a cladding sheet manufactured by bonding a copper foil to a nickel foil with 0.1-3% reduction and forming a signal circuit conductor covered by an earth circuit and the wiring lead-out port.
Abstract:
A tape wiring substrate may have dispersion wiring patterns. The dispersion wiring patterns may be provided between input/output wiring pattern groups to compensate for the intervals therebetween. Connecting wiring patterns may be configured to connect the dispersion wiring patterns to a first end of the adjacent input/output wiring pattern.
Abstract:
A registered memory module includes several memory devices coupled to a register through a plurality of transmission lines forming a symmetrical tree topology. The tree includes several branches each of which includes two transmission lines coupled only at its ends to either another transmission line or one of the memory devices. The branches are arranged in several layers of hierarchy, with the transmission lines in branches having the same hierarchy having the same length. Each transmission line preferably has a characteristic impedance that is half the characteristic impedance of any pair of downstream transmission lines to which it is coupled to provide impedance matching. A dedicated transmission line is used to couple an additional memory device, which may or may not be an error checking memory device, to the register.
Abstract:
A multi-layer cross connect having high isolation between signal channels, the multi-layer cross connect comprising: (a) a multi-layer circuit board having a top and bottom orientation and comprising at least a bottom layer and one or more upper layers; (b) a plurality of microstrip launches along the perimeter of the bottom layer; (c) a plurality of striplines on the bottom layer, each stripline being connected to one and only one microstrip launch and comprising a transformer for lowering its impedance and thereby increasing its width, the striplines comprising first striplines and second striplines; (d) a plurality of transition vias, each transition via conductively coupling each of the second striplines to a stripline on an upper layer; and (e) a combiner on each layer for combining signals from multiple striplines to a common stripline.
Abstract:
A power amplifier includes amplifier elements to amplify input signals of different frequencies. The amplifier also includes a power supply circuit that includes a common power supply path including an end connected to a power supply input terminal connected to a DC power supply. The amplifier further includes individual power supply paths each including an end connected to the other end of the common power supply path, and the other end connected to the main electrode of a corresponding one of the amplifier elements. The individual power supply paths have different impedances.
Abstract:
A power amplifier includes amplifier elements to amplify input signals of different frequencies. The amplifier also includes a power supply circuit that includes a common power supply path including an end connected to a power supply input terminal connected to a DC power supply. The amplifier further includes individual power supply paths each including an end connected to the other end of the common power supply path, and the other end connected to the main electrode of a corresponding one of the amplifier elements. The individual power supply paths have different impedances.
Abstract:
A power amplifier includes amplifier elements to amplify input signals of different frequencies. The amplifier also includes a power supply circuit that includes a common power supply path including an end connected to a power supply input terminal connected to a DC power supply. The amplifier further includes individual power supply paths each including an end connected to the other end of the common power supply path, and the other end connected to the main electrode of a corresponding one of the amplifier elements. The individual power supply paths have different impedances.
Abstract:
A power amplifier includes amplifier elements to amplify input signals of different frequencies. The amplifier also includes a power supply circuit that includes a common power supply path including an end connected to a power supply input terminal connected to a DC power supply. The amplifier further includes individual power supply paths each including an end connected to the other end of the common power supply path, and the other end connected to the main electrode of a corresponding one of the amplifier elements. The individual power supply paths have different impedances.
Abstract:
A memory module is capable of constituting short loop-through form memory bus systems in which the length of the entire channel can be reduced. As a result, the systems are suitable for a high-speed operation, and costs for fabricating systems such as a board and a module connector can be reduced. The memory module includes a plurality of tabs located in one side of the front and in one side on the rear of the memory module, for being interconnected by a connector on a system board, a plurality of vias for connecting two different signal layers of the memory module, and a plurality of data buses extended from the tabs on the front of the memory module to the tabs on the rear of the memory module through each of the vias. At least one memory device is connected to each of the data buses. Preferably, each of the data buses is formed to be perpendicular to one side of the memory module on which the tabs are formed.
Abstract:
A memory module has improved signal propagation delays for signals externally driven such as from a motherboard. Reflections from junctions of wiring traces on the memory module are reduced or eliminated. An input buffer or register receives a signal from the motherboard and splits the signal to drive two outputs to two separate traces. Each trace is enlarged in width or thickness, such as by using a double-width wiring trace. At the fare end of each double-width trace, a junction is made to two minimum-width traces that connect to small stub traces to DRAM inputs. Reflections from the junction are eliminated or reduced by trace-impedance matching, since the input impedance of the double-width trace from the input buffer is about the same as the combined impedance of the two minimum-width traces. Trace-input matching and input buffering can improve signal integrity and overall propagation delay.