Abstract:
An object of the invention is to provide a thin-film electronic component and a motherboard in which coupling strength of an external terminal to a supporting substrate is improved. The thin-film electronic component comprising: a supporting substrate; a lower electrode formed on part of the supporting substrate; an insulation layer formed on the lower electrode; an upper electrode formed on the insulation layer; a connection electrode which is formed on part of the supporting substrate located on a bottom surface of a through hole formed on the insulation layer, and is electrically connected to the lower electrode; and an external terminal disposed on the connection electrode within the through hole.
Abstract:
A multi-layer board includes a ceramic layer and plural resin layers which are stacked together. The ceramic layer is provided with an impedance element formed thereon, and the uppermost resin layer is provided with an electronic component mounted thereon. The multi-layer board is stable against a temperature change.
Abstract:
A wiring circuit block (2) is produced by forming a release layer (6) on one of planarized principal surfaces of a mother substrate (1), forming an insulating layer (7) on the release layer (6), patterning the insulating layer (7) and forming a wiring layer (8) on the patterned insulating layer (7), and separating the insulating layer (7) and wiring layer (8) from the release layer (6) on the mother substrate (1). The circuit block (2) has components (12), (13) and (17) deposited on the wiring layer (8), and is mounted on a base circuit board (3) to provide a wiring device. Also, semiconductor chips (62) are mounted on the circuit block (2), and the circuit block (2) is mounted on a base circuit board (64) to provide a semiconductor device.
Abstract:
A method for forming an embedded low profile capacitor in a multilayer printed circuit board. The method entails providing a first metal plate on a dielectric substrate. A dielectric layer of a photopolymeric material is applied onto a first region of the first metal plate, surrounded by a second region that is exposed. A second metal plate is deposited onto the dielectric layer and the second region of the first metal plate. The second plate is then patterned to decline an upper electrode on the dielectric layer that is electrically isolated from the first metal plate. This may be accomplished by forming a trench in the second metal plate above the dielectric layer. In one aspect, the resulting capacitor thus comprises a lower electrode structure derived mainly from the first metal plate, a dielectric layer overlying the first region of the first metal plate and an upper electrode overlying the dielectric layer. The lower metal structure also includes an extension deposited onto the second region of the first metal layer about the dielectric layer and including a lip overlying a perimeter of the dielectric layer surface.
Abstract:
An interposer adapted to be used between a mounting board and a semiconductor chip which is to be mounted on the mounting board. The interposer comprises: a heat-resistant insulator having first and second surfaces, the insulator being provided with a plurality of through-holes opened at the first and second surfaces; wiring patterns formed on the first and second surfaces of the insulator electrically connected to each other by means of a conductor provided on an inner wall of at least one of the through-holes; and a capacitor. The capacitor comprises: a first electrode formed on the insulator and having a connecting portion formed on an inner wall of at least one of the other through-holes; a dielectric layer formed on the first electrode; and a second electrode formed on the dielectric layer.
Abstract:
In order to provide an electronic circuit board capable of preventing the breakdown voltage of a capacitor element from dropping and excellent in high frequency performance, a positive type photoresist is spin-coated over the surface of an alumina substrate and is exposed to light and developed to form an insulating layer partially, followed by formation of a capacitor element by successively stacking a lower electrode, a dielectric layer and an upper electrode over this insulating layer, further followed by formation of a resistance element, an inductor element and a transmission line, each in a filmy state, over the surface of the alumina substrate.
Abstract:
The present invention relates to a thin film capacitor device having a copper wiring layer, a dielectric layer, and a barrier layer interposed between the wiring layer and the dielectric layer. The barrier layer has the function of preventing diffusion of copper of the wiring layer. The thin film capacitor device may also include an insulating substrate, a planarizing layer, an adhesion layer, and an intermediate layer. The present invention may also relate to a printed circuit substrate having the described thin film capacitor device built therein as a capacitor.
Abstract:
A method for fabricating an organic circuit board having embedded passive components, such as resistors, capacitors and inductors, is disclosed. In embedding a resistor or capacitor, a passive unit of a resistive film or a capacitive film is first made on one side of a conductive foil. In forming an inductor, a soft magnetic film is first made on one side of a conductive foil. The foil with the soft magnetic film is then introduced into the multilayer circuit board processing. The electrodes for various passive components or spiral coils for the inductive components and electrical circuit pattern are finally made on the same conductive foil simultaneously. The soft magnetic film deposited on the top of the spiral coil may be made to further improve inductor performance.
Abstract:
The present invention provides a thin film capacitance element having minimal deviation of capacitance value in a high accuracy formed on a printed circuit board (core material). The thin film capacitance element formed on a printed circuit board is composed of a lower electrode layer formed on the printed circuit board through an insulation layer, a dielectric layer formed on the lower electrode layer, an upper electrode layer formed on the dielectric layer and an electric pad for leading out the lower electrode layer, wherein the lower electrode layer is longer than the upper electrode layer in the horizontal direction and connected to the electric pad for leading out the lower electrode layer outside, and wherein the top surface of the upper electrode layer and the top surface of the electric pad for leading out the lower electrode layer are formed substantially in the same height.
Abstract:
In order to provide an electronic circuit board capable of preventing the breakdown voltage of a capacitor element from dropping and excellent in high frequency performance, a positive type photoresist is spin-coated over the surface of an alumina substrate and is exposed to light and developed to form an insulating layer partially, followed by formation of a capacitor element by successively stacking a lower electrode, a dielectric layer and an upper electrode over this insulating layer, further followed by formation of a resistance element, an inductor element and a transmission line, each in a filmy state, over the surface of the alumina substrate.