Abstract:
A printed circuit board is provided with at least one via hole, in which a heat dissipating element is arranged, wherein at least one radiant source is arranged on the heat dissipating element. The lighting device is provided with at least one such printed circuit board.
Abstract:
Provided is an FPC, which comprises an insulating layer 2, wiring layers 3 and 4 laminated above and under the insulating layer 2, and a layer connection for connecting the wiring layers 3 and 4 electrically. The layer connection is constituted to comprise: a conductor press-fit hole 5 of a cone shape extending through the insulating layer 2 and the upper and lower wiring layers 3 and 4 and expanded to the side of one wiring layer 3; and a conductor 6 filled and press-fitted without any clearance in the conductor press-fit hole such that it is jointed to the wiring upper layer 3 deformed into the cone shape of the conductor press-fit hole 5, and is protruded from the other wiring lower layer 4 to have its surface partially coated and jointed. As a result, the contact area between the wiring layers 3 and 4 and the conductor 6 filled in the conductor press-fit hole 5 can be enlarged to retain the contact strength between the wiring layers 3 and 4 and the conductor 6 sufficiently thereby to provide a high connection reliability for the layer connection.
Abstract:
The conductor board has at least one layer of a dielectric provided areally on two mutually opposed faces with at least one metalization on each. There is at least one through contacting in the region of an aperture. The metalizations are applied to cover at least one aperture and are electrically connected to each other through the aperture.
Abstract:
A circuit carrier structure has at least one electronic component and is formed using SMD technology. Underneath the at least one electronic component is arranged a continuous recess in a circuit carrier. A die made of a heat-conducting material is inserted with one end of a joining area into the recess and fixed in place with a layer of heat-conducting cement and connected to the component in a heat-conducting manner. Further the die has on its other side a linkage area, whose cross-sectional area is at least in part of larger dimensions than the recess in the circuit carrier and whose end is connected to a heat sink in a heat-conducting manner.
Abstract:
A method and apparatus suitable for forming hermetic electrical feedthroughs in a ceramic sheet having a thickness of ≦40 mils. More particularly, the method yields an apparatus including a hermetic electrical feedthrough which is both biocompatible and electrochemically stable and suitable for implantation in a patient's body. The method involves: (a) providing an unfired, ceramic sheet having a thickness of ≦40 mils and preferably comprising >99% aluminum oxide; (b) forming multiple blind holes in said sheet; (c) inserting solid wires, preferably of platinum, in said holes; (d) firing the assembly of sheet and wires to a temperature sufficient to sinter the sheet material but insufficient to melt the wires; and (e) removing sufficient material from the sheet lower surface so that the lower ends of said wires are flush with the finished sheet lower surface.
Abstract:
A wired circuit board includes a metal supporting board having a depressed portion, a conductive portion embedded in the depressed portion and formed of a material having a higher conductivity than that of the metal supporting board, an insulating layer formed on the metal supporting board so as to cover the conductive portion, and a plurality of wired formed on the insulating layer in mutually spaced-apart relation so as to oppose to the conductive portion.
Abstract:
A heat sink board having a first heat sink and a second heat sink with a smaller linear expansion coefficient than that of the first heat sink and being bonded to the first heat sink to form the heat sink board. The second heat sink is fitted to the first heat sink, and a material of the first heat sink in the vicinity of a boundary between the fitted heat sinks is plastically deformed for close adhesion to the second heat sink. A forming method makes bonding between the first and second heat sinks possible at room temperature, and the heat sink board made of a composite member having a high flat-surface accuracy can be easily and reliably obtained.
Abstract:
A process for soldering an electronic component onto a support which includes at least one heat drain for the component. The method uses a solder paste which incorporates a stripping flux activated at a first temperature, and a solder alloy melted at a second temperature. The process includes preheating the support on the face opposite the component through the heat drain up to the first temperature, placing the component on the support with the solder paste, heating the component by applying a hot gas at a sufficiently high temperature to bring the solder alloy to the melting temperature.
Abstract:
A multilayer circuit board includes: two or more layers of electrical insulative base members; and two or more layers of conductive patterned layers. At least two of the conductive patterned layers include coil patterns that will be a part of a coil, through holes are provided at predetermined positions of the electrical insulative base members, the positions being sandwiched between the coil patterns, so as to enable communication between respective end portions of the coil patterns, and conductive paste charged in the through holes allows electrical connection to be established between the respective end portions. The coil is formed so as to be wound in a direction perpendicular to a thickness direction of the multilayer circuit board. With this configuration, a multilayer circuit board can be provided, which facilitates increasing the winding number of a coil and has excellent flexibility of circuit design.
Abstract:
In some embodiments, apparatuses and methods for improving ball-grid-array solder joint reliability in printed circuit boards. Such apparatuses may comprise, in an exemplary embodiment, a stiffened printed circuit board defining one or more cavities therein and including one or more stiffening members positioned, respectively, in the one or more cavities. The cavities and embedded stiffening members may be located proximate a ball-grid-array device footprint so as to resist deflection caused by the application of forces to the board by test probe pins during testing. Such methods may include, in an exemplary embodiment, creating one or more cavities in a middle sub-layer of a core layer of a stiffened printed circuit board and inserting one or more stiffening members, respectively, therein. Top and bottom sub-layers may then be secured to top and bottom surfaces of the middle sub-layer to complete the core layer. Other embodiments are also described and claimed.