Abstract:
The present invention relates to the production of lithium from liquid resources such as natural and synthetic brines, leachate solutions from clays and minerals, and recycled products.
Abstract:
Disclosed herein are systems, methods, processes, and apparatuses for treating radioactive waste, through systems designed to bind and dry radioactive media. In some of its various embodiments, the system includes at least one helical screw designed to receive and mix liquid wastes with ion exchange media, as well as convey the resulting slurry through one or more of a binding, dewatering, and drying/off-gassing region.
Abstract:
A novel apparatus for an ion exchange system is provided. The apparatus comprises a first column for housing a first fluidized bed through which particles are flowed countercurrently to an ion-containing fluid to yield ion-loaded particles, a second column through which the ion-loaded particles are flowed countercurrently to an eluent fluid to yield regenerated particles, and a transport section which transfers the regenerated particles for re-introduction into the first column to repeat the ion exchange cycle in a continuous manner. A continuous method of ion exchange is also provided.
Abstract:
A device is provided for performing chemical transformation in a fluid, with a flow distributor having at least one fluid medium inlet, at least one fluid medium outlet, and at least one confinement wherein the chemical transformation is performed; and a means for rotating, rocking, wagging, or oscillating the device. At least one confinement may be equipped with a provision for providing heat, cooling, sound, light or other types of radiation, such provision being contacted to an external source through an actuator shaft. The flow distributor may be provided with sectors connected with the centrally located fluid medium inlet and a designated peripheral fluid medium outlet. The means for rotating, rocking, wagging, or oscillating the device may be an element producing magnetic fields or a shaft mechanically connected to an external actuating device.
Abstract:
A method and apparatus for separating purifying media from a treated fluid. The method includes transporting the purifying media and the treated fluid along a substantially horizontal direction while a substantial quantity of purifying media fall along a substantially vertical direction relative to the treated fluid to generate a concentration of purifying media below the treated fluid. The falling purifying media are collected while releasing the treated fluid so as to separate the purifying media from the treated fluid.
Abstract:
A method and apparatus for controlling purification of contaminated liquid. The apparatus includes an input line for receiving the contaminated water and a purifying material adapted to combine with undesirable components in the contaminated liquid so as to generate purified liquid and at least partially loaded purifying material. A separator is configured to separate the at least partially loaded purifying material from the purified liquid and provide an output for the purified liquid. A purifying portion is coupled between the input line and the separator, and the purifying material combines with the undesirable components within the purifying portion. A control system is configured to receive an indication of the quantity of undesirable components in the purified water and vary the amount of purifying material exposed to the contaminated water so as to generate additional purified water with a desired quantity of undesirable components.
Abstract:
In a vertical down-flow fluid bed reactor, suspended particles in liquid proximal to an inlet in an uppermost part of the reactor are agitated to form a downward extending turbulent zone having vigorously moving particles and a non-turbulent zone distal to the inlet having essentially stationary particles in liquid below and adjoining the turbulent zone. In a vertical up-flow fluid bed reactor, an upward extending turbulent zone is formed proximal to an inlet in a lowermost part of the reactor and the non-turbulent zone is above the turbulent zone. The downward or upward extend of the turbulent zone is determined by the degree of agitation. The particles may contain an active substance and be in the form of a conglomerate of base particles having a desired density to control floatation or sedimentation. Particles in the turbulent and non-turbulent zones may be different such as having different specific gravities. Liquid in the reactor may contain an enzyme or microorganism to be immobilized on the particles, or a protein to be purified by binding to the particles. Waste water may be treated in the reactor with particles containing an immobilized enzyme or microorganism, or with ion exchange conglomerate particles.
Abstract:
A device, and process, for continuously separating dissolved solutes and suspended particles from a multicomponent fluid phase in a magnetically stabilized fluidized bed (MSFB). The process is of the type wherein a solid resin and a liquid buffer move countercurrent to each other in the bed. In steady state operation, a time invariant pH gradient will form in the bed and remain spatially fixed. Other condition variables, such as temperature, can be used to form a time invariant gradient provided that equilibrium partition between the solid and liquid phases is a function of the condition variable.
Abstract:
The artificial moving bed of this invention includes a fluid distribution apparatus consisting of an upper fluid distributor and a lower fluid distributor, and a plurality of processing chambers held and fixed between the upper and lower fluid distributors. Each fluid distributor has a rotary valve held in a slidable condition between a fixed supply valve and a pipe fixing plate. These fluid distributors are formed with fluid passages therein. The processing chambers are divided into several groups, each assigned a specific process. Using this artificial moving bed, the processing chambers are operated simultaneously and when the process is finished in each group of processing chambers, the fluid distribution apparatus is rotated clockwise when viewed from above so that each group of chambers proceeds to the next process, thus allowing continuous adsorption operation.
Abstract:
Apparatus for removal of a desired material from a liquid is described, in which the liquid is cycled through a plurality of liquid treatment containers in a first direction and brought into countercurrent contact with a medium for recovery of the desired material cycled through the treatment containers in a second, opposite direction. After treatment of the liquid, the medium is advantageously regenerated in a plurality of medium regeneration containers. The used medium is cycled through a plurality of medium regeneration containers in a first direction and brought into countercurrent contact with a medium regeneration liquid cycled through the regeneration containers in a second, opposite direction. The apparatus further includes means for transferring at least a portion of the medium from the first liquid treatment container into the first medium regeneration container and means for transferring at least a portion of the at least partially regenerated medium from the final medium regeneration container into the final liquid treatment container.