Abstract:
A method of manufacturing an optical disc includes easily removing a bump formed on a circumference of the optical disc during forming a transparent layer by using a spin-coating method to form the optical disk having a high-density recording capacity. The method includes preparing a substrate having a diameter larger than that of a desired disc, applying an ultraviolet hardening resin to the substrate and forming a transparent layer having a predetermined thickness by a spin-coating method, illuminating an ultraviolet ray on the transparent layer and a bump formed on a circumference of the transparent layer to be hardened, and cutting out the bump by using a puncher. According to the method, the bump which inevitably occurs when the transparent layer is formed, can be easily cut out by a puncher.
Abstract:
A glass substrate is placed within a vacuum chamber with the surface on which an emissive layer forming an electroluminescence element is to be formed by evaporation facing downward. A mask is disposed within the vacuum chamber. A material of the emissive layer is adhered to the glass substrate through an opening of the mask, to thereby form the emissive layer. When the glass substrate and the mask are aligned, at least three sides of the glass substrate are supported by side supporting members.
Abstract:
The present invention relates to a method for imparting hydrophilicity to a substrate whereby high hydrophilic properties and water-holding properties can be maintained for a long period of time. According to the present invention, an SiO2 film is formed directly or through an undercoat layer on a substrate under a reduced pressure of 100 Pa or less and immediately after the SiO2 film is formed, the SiO2 film is treated with water. Before forming the SiO2 film, it is also desirable that an undercoat layer consisting of a TiO2 film, Al2O3 film, Nb2O5 film, a laminated film prepared by laminating the TiO2 film on the Al2O3 film, a laminated film prepared by laminating the TiO2 film on the Nb2O5 film, or a low emissivity film be formed on a substrate and the SiO2 film be then formed on the undercoat film to serve as an SiO2 composite film.
Abstract translation:本发明涉及一种赋予基材亲水性的方法,由此能够长时间保持高的亲水性和保水性。 根据本发明,在100Pa以下的减压下,在基板上直接或通过底涂层形成SiO 2膜,在形成SiO 2膜之后立即用水处理SiO 2膜。 在形成SiO 2膜之前,还期望的是,由TiO 2膜,Al 2 O 3膜,Nb 2 O 5膜构成的底涂层,通过在Al 2 O 3膜上层压TiO 2膜制备的层压膜,通过将TiO 2膜层压 在基板上形成Nb 2 O 5膜或低发射率膜,然后在底涂膜上形成SiO 2膜作为SiO 2复合膜。
Abstract:
In the manufacturing process of a screen (6), for use in a color display tube (1), a photosensitive process step, referred to as the exposure process, is used for applying the black matrix pattern and the phosphor layers to the display window (3) to form the screen (6). The robustness of this exposure process is dependent on, amongst others, the shape of the microscopic light distribution on the display window (3). It appears that in color display tubes (1) with an increased deflection angle, or in tubes with a real flat outer surface, the exposure process becomes more and more critical. According to the invention, this problem can be overcome by adding a bleaching dye to the photosensitive material used for the exposure process. This bleaching dye's action in the center of the microscopic light distribution is stronger than in the peripheral portions. As a result the slopes of the microscopic light distribution become steeper, leading to an increase of the contrast in the exposure process which thus becomes much more robust.
Abstract:
A method of forming a fluorescent screen where a pigment film and a fluorescent film are deposited on a surface of a light transmissive substrate, the method comprising: coating a pigment dispersion liquid on the surface of the light transmissive substrate to form a coated film; and forming a pigment film by drying the coated film; wherein drying of the coated film is performed under the conditions that a temperature of corner portions of the light transmissive substrate is controlled to not lower than 36null C., or that drying means which is exclusively assigned to dry the corner portions of the coated film is employed.
Abstract:
A decorative emblem with an enhanced depth of vision is provided. The decorative emblem comprises a decorative substrate, at least one layer of transparent plastic material formed on the top surface of the decorative substrate, and image or design printed on the substantially flat surface of the layer of plastic material, and a transparent plastic overlay flow coated over the image or design, the transparent plastic overlay has radiused edges to give an enhanced depth of vision to the decorative emblem by creating a lens effect and providing a floating appearance to the image or design.
Abstract:
The invention relates to an optical component (1) consisting of a base unit (3) which supports a substrate (5) with a substrate region (7) that encompasses an optically functional surface, and a coating (9) which covers the substrate region (7) and at least part of the base unit (3). The substrate region (7) and a reference point (13) in the base unit (3) are oriented relative to each other in predefined fashion. The optical component (1) is produced by assembling the base unit (3) and the substrate (5) prior to the coating process, preferably by means of an assembly device (17). The assembled component is subsequently coated by employing a vacuum coating technique.
Abstract:
A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.
Abstract:
A conductively coated panel for inclusion in a transparent interactive input device useful with an electro-optic display includes a transparent substrate having a transparent, conductive layer on at least one surface. The conductive layer is applied in a predetermined pattern with at least one area having a conductive layer thereon and a second area without a conductive layer. A transparent layer of a metal oxide such as silicon dioxide overlies both areas whereby visible contrast between the areas is reduced and light transmission through the coated panel is increased. An interactive device, and a method for forming an interactive device with the conductively coated panel, are also disclosed.
Abstract:
A plurality of glass particles synthesizing burners are arranged at a predetermined burner interval opposite to a rotating starting rod. The starting rod and the glass particles synthesizing burners are relatively parallely reciprocally moved, and the soot deposition is conducted. A reciprocating speed v(mm/minute), axis rotating speed r (rpm), and burner interval L (mm) are set so that a value A expressed by the expression Anull(r/v)nullL is in a range 40nullAnull8.