Abstract:
Opposed electrode arrays are driven from busses on which assymetric, periodic pulsating, sustainer voltage components are imposed by pull-up, pull-down and pull to ground circuits to energize display/memory gas discharge panels made up of a plurality of discharge cells, each cell including proximate electrode portions of at least one electrode in each opposed array. A pull-up buss and a pull-down buss is provided for each electrode array and each is coupled to each electrode of the array by isolation diodes. The device is subjected to electronic inversion of the discharge states of its cells by selective activation of the pull-up and pull-down circuits whereby the resultant alternating sustainer voltage established across the cells for one set of applied substainer component wave forms defines an ''''off state'''' cell wall voltage level essentially at the cell wall voltage of a discharged cell in the ''''on state'''' cell wall voltage of a discharged cell for the one set of applied sustainer component wave forms is essentially at the off state cell wall voltage level for the second set of applied sustainer components. Signals for selectively manipulating the discharge state of each cell are applied to the electrodes of the cell by address pulsers comprising pull-to-ground circuits each of which functions for at least one electrode in each array. Pre-address pulsers reduce the bus potentials to minimize the power requirements on the address pulsers. Buss potential sensing circuits enable addressing of cells only when predetermined buss potentials are achieved. Circuits are provided to compensate for interconductor capacitance effects in the panel.
Abstract:
A system for spectroscopic analysis is disclosed, the system being laser-operated and including a semiconductor diode laser fabricated from a lead-germanium telluride crystal. An infrared detector is disposed in the optical path of the laser, with a sample holder being positioned between the laser and the infrared detector. The sample being analyzed may comprise a gas and/or vapor having infrared absorption bands matching the wavelength of the laser output to enable the system to perform spectroscopic analysis of the sample.
Abstract:
A passive impedance-matching network specifically designed to provide an interface between a fixed radio frequency power output of a generator and the capacitive electrodes of the gaseous plasma chamber of a plasma-generating apparatus, the network having the particular characteristic of providing a close impedance match over a relatively wide changing impedance range of the plasma in accordance with a known program.
Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber, and an optical system for collecting plasma radiation.
Abstract:
Disclosed is a method for measuring luminance of each of entire pixels two-dimensionally arranged in a light-emitting display panel at regular intervals, using an image sensor in which light receiving elements are two-dimensionally arranged at regular intervals, the method including: providing an optical lens between the light-emitting display panel and the image sensor, and adjusting distances between the light-emitting display panel, the image sensor, and the optical lens by setting intervals of images of the entire pixels to be N times as large as intervals of the light receiving pixels, where N is a natural number, the images being to be formed on a light receiving surface of the image sensor through the optical lens; displaying, on the light-emitting display panel, a display pattern in which predetermined pixels from among the entire pixels produce a luminescence; and measuring the luminance of the predetermined pixels, using the light receiving elements.
Abstract:
A high-pressure discharge lamp having a starting aid and having a discharge vessel is disclosed, wherein the discharge vessel has two ends with seals, in which electrodes and possibly power supply lines are fastened, wherein the starting aid includes a wire system consisting of a core wire and a wrapping wire applied thereto, wherein the wrapping wire is a flat-pressed or flattened wire.
Abstract:
A tungsten cathode material to be used for TIG welding, plasma spraying, plasma cutting, electro-discharge machining, discharge lamps, and the like is improved; use of the radioactive element thorium is reduced; and a long life and a high performance are realized. In a tungsten cathode material, oxide particles containing an oxide or oxides of at least one selected from the group consisting of Sm, Nd, Gd, and La in a total amount of 50 vol % or more are dispersed, the oxide particles having an average particle diameter d satisfying the relationship 0
Abstract:
The invention relates to the technical field of illumination lamps, in particular to an LED bulb. The invention comprises a lamp cap, a lampshade, LEDS and a circuit board, wherein the bottom end of the lampshade is mounted and fixed at the top end of the lamp cap; the circuit board is mounted and fixed in the lampshade and also electrically connected with the lamp cap; and the lampshade is filled with a mixed gas which transfers heat produced by the LEDS outside the bulb. The invention transfers heat produced by the LEDS by a mixed gas; the LED bulb has such advantages to as small weight, small volume and low production cost; besides, by using the mixed gas as heat transfer medium, the invention can radiate heat produced by the LEDS outside the bulb rapidly so as to effectively solve the heat radiation issue of the LEDS and prolong the service life of the LEDS.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a front substrate, a rear substrate positioned to be opposite to the front substrate, a barrier rib positioned between the front substrate and the rear substrate to partition a discharge cell, and a phosphor layer positioned in the discharge cell. The phosphor layer includes a phosphor material and an additive material. The phosphor layer includes a red phosphor layer emitting red light, a green phosphor layer emitting green light, and a blue phosphor layer emitting blue light. A thickness of the blue phosphor layer is larger than a thickness of the red phosphor layer.
Abstract:
The present invention relates to a high pressure discharge lamp that includes a pair of electrodes, which face each other in an electric discharge space. Further, an electrode axis of one of the electrodes is joined to a metallic foil in a sealing portion, and two or more grooves are formed in an axis direction on a portion corresponding to the sealing portion on the electrode axis. Furthermore, a remaining portion that lacks grooves is left on the electrode axis in a metallic foil side thereof, and the metallic foil side ends of the grooves are not aligned with each other in the axis direction thereof.