Abstract:
An image reading apparatus capable of reading documents includes a reading unit including a light emitting element, a mechanism configured to move the reading unit, and a control unit configured to control the reading unit and the mechanism both to carry out reading by turning on the light emitting element and moving the reading unit and to temporarily stop moving the reading unit upon occurrence of a predetermined factor. The control unit sets a first current value which is caused to flow through the light emitting element when reading is carried out and sets a second current value which is less than the first current value and which is caused to flow through the light emitting element when the reading unit is temporarily stopped.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
Asymmetric rotating stray light baffles are provided for conformal dome two-axis seekers having arch corrector optics mounted on the outer gimbal. A pair of side skirt baffles are mounted on opposite sides of the arch corrector optics on the outer gimbal extending forward beyond the transparent arch adjacent but not touching the inner surface of the dome and extending aft beyond the forward most receiver optic for all fields of regard (FOR). The optical system may also include: (a) an annular objective baffle mounted on and around the receiver optics on the inner gimbal and between the pair of side skirt baffles, the objective baffle extending forward of the receiver optics without interfering with the receiver optics' FOV and without interfering with the transparent arch as the inner gimbal rotates, (b) a plurality of fin baffles mounted between the side skirt baffles on the outer gimbal that extend forward adjacent but not touching the inner surface of the dome and aft of the transparent arch, each fin baffle positioned to reduce the cross-section seen by the receiver optic when rotated in the direction of that fin baffle and (c) central baffles (short or long) along the axis of symmetry that obscure a portion of the receiver optics' FOV at a zero degree angle of rotation about the second axis.
Abstract:
A processing system may include a plasma source for providing a plasma and a workpiece holder arranged to receive ions from the plasma. The processing system may further include a pulsed bias circuit electrically coupled to the plasma source and operable to switch a bias voltage supplied to the plasma source between a high voltage state in which the plasma source is biased positively with respect to ground and a low voltage state in which the plasma source is biased negatively with respect to the ground.
Abstract:
An inductively coupled plasma source having multiple gases in the plasma chamber provides multiple ion species to a focusing column. A mass filter allows for selection of a specific ion species and rapid changing from one species to another.
Abstract:
A polarization diversity detector includes at least one optical fiber having a first end for receiving a beam of light and a second end for transmitting the beam of light. A collimator receives the beam of the light from the optical fiber and outputs a collimated beam. A polarization diversity element includes a birefringent material which is positioned for receiving the collimated beam and resolving the collimated beam into a first beam having a first polarization and a second beam having a second polarization different from the first polarization. The first beam and second beam are angled relative to one another. At least one photodetector array pair includes a first photodetector array positioned to receive the first beam and a second photodetector array positioned to receive the second beam.
Abstract:
A white beam slit. The embodiment of this unit consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, stepper motors, limit switches, electrical connections for a drain current measurement system and a stand for the vacuum chamber to attach to. For the base design, the fully scanable aperture can be up to 35 mm square with a maximum aperture of 50 mm square. For custom designs, the aperture can be significantly larger. A cooling assembly is incorporated within to maintain temperature of moveable slit components.
Abstract:
A charged particle source comprises at least one gas inlet configured to supply gas particles, at least one tip having a tip apex being biased to provide an electrical field for generating charged particles, and at least one ionization area to which gas particles are supplied. The gas particles are ionized in the ionization area due to the electrical field. Additionally, the charged particle source comprises at least one first electrode configured to accelerate charged particles and at least one light emitting device providing a light beam. The light beam is focused to a focus point in the ionization area, specifically, to a focus volume such that the ionization area is at least partly positioned in the focus volume. The ionization area is arranged between the tip apex and the first electrode. The distance between the ionization area and the tip apex may be from 0.1 nm to 1 nm.
Abstract:
Disclosed herewith is a charged particle beam apparatus capable of controlling each of the probe current and the objective divergence angle to obtain a desired probe current and a desired objective divergence angle in accordance with the diameter of the subject objective aperture. The apparatus is configured to include an objective aperture between first and second condenser lenses to calculate and set a control value of a first condenser lens in accordance with the diameter of the hole of the objective aperture so as to obtain a desired probe current and calculate a control value of a second condenser lens setting device in accordance with the diameter of the hole of the objective divergence angle and the control value of the second condenser lens setting device, thereby setting the calculated control value for the second condenser lens setting device to control the objective divergence angle.
Abstract:
A drawing apparatus include: a charged particle optical system configured to generate M×N charged particle beams; a limiting device configured to limit number of charged particle beams that the charged particle optical system emits toward a substrate; and a controller configured, if an abnormal beam that does not satisfy a use condition is present among the M×N charged particle beams, to control the limiting device such that only m rows, each of the m rows including n charged particle beams that are successive without intervention of the abnormal beam.