Abstract:
There is disclosed a gas discharge display/memory device wherein the discharge is selectively controlled for various advantages, particularly increased light output and panel brightness. The device is characterized by an ionizable gaseous medium in a thin gas chamber between a pair of opposed dielectric charge storage members, each dielectric member being backed by an array of electrodes with each array being appropriately oriented relative to the other array so as to form a multiplicity of gas discharge cells. Both opposing dielectric charge storage surfaces of each cell are coated with a first layer of low electron yield material and a second layer of high electron yield material - in the geometric form of dots, lines, etc., - the second layer being appropriately positioned such that it is surrounded by the first layer of low electron yield material and such that two opposing surfaces of high electron yield material at or near a discharge cell site cause the cell discharge to occur at the pair of opposing surfaces of high electron yield material. The relative position of the high electron yield material surfaces can be utilized to maximize the visible light output from the panel. The Townsend''s (gamma) second coefficient of the high electron yield material is at least 1.5 times the Townsend''s second coefficient of the low electron yield material.
Abstract:
A light-emitting tube array-type light source device includes: a plurality of light-emitting gas discharge tubes 11; and an electrode substrate 30 supporting the light-emitting gas discharge tubes in parallel on an upper surface thereof, the electrode substrate having a plurality of slits partially exposes a bottom surface of each light-emitting tube, thereby the light-emitting gas discharge tubes can be cooled through the slits.