Abstract:
A microelectronic assembly or package can include first and second support elements and a microelectronic element between inwardly facing surfaces of the support elements. First connectors and second connectors such as solder balls, metal posts, stud bumps, or the like face inwardly from the respective support elements and are aligned with and electrically coupled with one another in columns. Dielectric reinforcing collars are provided on outer surfaces of the first connectors, second connectors or both, and an encapsulation separates pairs of coupled connectors from one another and may fill spaces between support elements.
Abstract:
A microelectronic package can include a support element having first and second surfaces and substrate contacts at the first or second surface, zeroth and first stacked microelectronic elements electrically coupled with the substrate contacts, and terminals at the second surface electrically coupled with the microelectronic elements. The second surface can have a southwest region encompassing entire lengths of south and west edges of the second surface and extending in orthogonal directions from the south and west edges one-third of each distance toward north and east edges of the second surface, respectively. The terminals can include first terminals at a southwest region of the second surface, the first terminals configured to carry address information usable by circuitry within the microelectronic package to determine an addressable memory location from among all the available addressable memory locations of the memory storage arrays of at least one of the zeroth or first microelectronic elements.
Abstract:
A microelectronic package can include a substrate having first and second opposed surfaces extending in first and second transverse directions and an opening extending between the first and second surfaces and defining first and second distinct parts each elongated along a common axis extending in the first direction, first and second microelectronic elements each having a front surface facing the first surface of the substrate and a column of contacts at the respective front surface, a plurality of terminals exposed at the second surface, and first and second electrical connections aligned with the respective first and second parts of the opening and extending from at least some of the contacts of the respective first and second microelectronic elements to at least some of the terminals. The column of contacts of the first and second microelectronic elements can be aligned with the respective first and second parts of the opening.
Abstract:
A module is configured for connection with a microelectronic assembly having terminals and a microelectronic element. The module includes a circuit panel bearing conductors configured to carry command and address information, co-support contacts coupled to the conductors, and module contacts coupled to the conductors. The co-support contacts include first contacts having address and command information assignments arranged in a first predetermined arrangement for connection with a first type of microelectronic assembly in which the microelectronic element is configured to sample command and address information coupled thereto through the first contacts at a first sampling rate, and in a second predetermined arrangement for connection with a second type of the microelectronic assembly in which the microelectronic element is configured to sample the command and address information coupled thereto through a subset of the first contacts at a second sampling rate greater than the first sampling rate.
Abstract:
A microelectronic package can include lower and upper package faces, lower terminals at the lower package face configured for connection with a first component, upper terminals at the upper package face configured for connection with a second component, first and second microelectronic elements each having memory storage array function, and conductive interconnects each electrically connecting at least one lower terminal with at least one upper terminal. The conductive interconnects can include first conductive interconnects configured to carry address information, signal assignments of a first set of the first interconnects having 180° rotational symmetry about a theoretical rotational axis with signal assignments of a second set of first interconnects. The conductive interconnects can also include second conductive interconnects configured to carry data information, the position of each second conductive interconnect having 180° rotational symmetry about the rotational axis with a position of a corresponding no-connect conductive interconnect.
Abstract:
A microelectronic structure has active elements defining a storage array, and address inputs for receipt of address information specifying locations within the storage array. The structure has a first surface and can have terminals exposed at the first surface. The terminals may include first terminals and the structure may be configured to transfer address information received at the first terminals to the address inputs. Each first terminal can have a signal assignment which includes one or more of the address inputs. The first terminals are disposed on first and second opposite sides of a theoretical plane normal to the first surface, wherein the signal assignments of the first terminals disposed on the first side are a mirror image of the signal assignments of the first terminals disposed on the second side of the theoretical plane.
Abstract:
A structure may include bond elements having bases joined to conductive elements at a first portion of a first surface and end surfaces remote from the substrate. A dielectric encapsulation element may overlie and extend from the first portion and fill spaces between the bond elements to separate the bond elements from one another. The encapsulation element has a third surface facing away from the first surface. Unencapsulated portions of the bond elements are defined by at least portions of the end surfaces uncovered by the encapsulation element at the third surface. The encapsulation element at least partially defines a second portion of the first surface that is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some conductive elements are at the second portion and configured for connection with such microelectronic element.
Abstract:
A microelectronic assembly can include a circuit panel having first and second panel contacts at respective first and second surfaces thereof, and first and second microelectronic packages each having terminals mounted to the respective panel contacts. Each package can include a microelectronic element having a face and contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The terminals can include first terminals at positions within first and second parallel grids. The first terminals can be configured to carry address information usable by circuitry within the package to determine an addressable memory location from among all the available addressable memory locations of a memory storage array within the microelectronic element. Signal assignments of the first terminals in the first grid can be a mirror image of signal assignments of the first terminals in the second grid.
Abstract:
A microelectronic package can include a substrate and a microelectronic element having a face and one or more columns of contacts thereon which face and are joined to corresponding contacts on a surface of the substrate. An axial plane may intersect the face along a line in the first direction and centered relative to the columns of element contacts. Columns of package terminals can extend in the first direction. First terminals in a central region of the second surface can be configured to carry address information usable to determine an addressable memory location within the microelectronic element. The central region may have a width not more than three and one-half times a minimum pitch between the columns of package terminals. The axial plane can intersect the central region.
Abstract:
The technology relates to a system on chip (SoC). The SoC may include a plurality of network layers which may assist electrical communications either horizontally or vertically among components from different device layers. In one embodiment, a system on chip (SoC) includes a plurality of network layers, each network layer including one or more routers, and more than one device layers, each of the plurality of network layers respectively bonded to one of the device layers. In another embodiment, a method for forming a system on chip (SoC) includes forming a plurality of network layers in an interconnect, wherein each network layer is bonded to an active surface of a respective device layer in a plurality of device layer.