Abstract:
In one embodiment, the present invention includes a method for selecting a first transaction execution mode to begin a first transaction in a unbounded transactional memory (UTM) system having a plurality of transaction execution modes. These transaction execution modes include hardware modes to execute within a cache memory of a processor, a hardware assisted mode to execute using transactional hardware of the processor and a software buffer, and a software transactional memory (STM) mode to execute without the transactional hardware. The first transaction execution mode can be selected to be a highest performant of the hardware modes if no pending transaction is executing in the STM mode, otherwise a lower performant mode can be selected. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for selecting a first transaction execution mode to begin a first transaction in a unbounded transactional memory (UTM) system having a plurality of transaction execution modes. These transaction execution modes include hardware modes to execute within a cache memory of a processor, a hardware assisted mode to execute using transactional hardware of the processor and a software buffer, and a software transactional memory (STM) mode to execute without the transactional hardware. The first transaction execution mode can be selected to be a highest performant of the hardware modes if no pending transaction is executing in the STM mode, otherwise a lower performant mode can be selected. Other embodiments are described and claimed.
Abstract:
A first software program executing on a computing device emulates a second computing device executing a software program using emulated memory. The first software program permits the second software program to perform an operation on a contiguous portion of the emulated memory only when a pointer and a table entry both contain the same identifier, thus protecting against common types of memory usage errors in the second software program. The pointer has an address to the contiguous portion. The table entry maps to the contiguous portion. A plurality of table entries map to a respective plurality of contiguous portion of the emulated memory. A plurality of the pointers each contain the address to a respective contiguous portion of the emulated memory as well as containing an identifier corresponding to the respective contiguous portion of the emulated memory. The second computing device can be high or low in resources.
Abstract:
In one embodiment, the present invention includes a method for receiving control in a kernel mode via a ring transition from a user thread during execution of an unbounded transactional memory (UTM) transaction, updating a state of a transaction status register (TSR) associated with the user thread and storing the TSR with a context of the user thread, and later restoring the context during a transition from the kernel mode to the user thread. In this way, the UTM transaction may continue on resumption of the user thread. Other embodiments are described and claimed.
Abstract:
Monitoring performance of one or more architecturally significant processor caches coupled to a processor. The methods include executing an application on one or more processors coupled to one or more architecturally significant processor caches, where the application utilizes the architecturally significant portions of the architecturally significant processor caches. The methods further include at least one of generating metrics related to performance of the architecturally significant processor caches; implementing one or more debug exceptions related to performance of the architecturally significant processor caches; or implementing one or more transactional breakpoints related to performance of the architecturally significant processor caches as a result of utilizing the architecturally significant portions of the architecturally significant processor caches.
Abstract:
Various technologies and techniques are described for providing a transaction grouping feature for use in programs operating under a transactional memory system. The transaction grouping feature is operable to allow transaction groups to be created that contain related transactions. The transaction groups are used to enhance performance and/or operation of the programs. Different locking and versioning mechanisms can be used with different transaction groups. When running transactions, a hardware transactional memory execution mechanism can be used for one transaction group while a software transactional memory execution mechanism used for another transaction group.
Abstract:
Minimizing code duplication in an unbounded transactional memory system. A computing apparatus including one or more processors in which it is possible to use a set of common mode-agnostic TM barrier sequences that runs on legacy ISA and extended ISA processors, and that employs hardware filter indicators (when available) to filter redundant applications of TM barriers, and that enables a compiled binary representation of the subject code to run correctly in any of the currently implemented set of transactional memory execution modes, including running the code outside of a transaction, and that enables the same compiled binary to continue to work with future TM implementations which may introduce as yet unknown future TM execution modes.
Abstract:
A computing device hosts a virtual machine executing a guest that issues guest hardware requests by way of any of a plurality of paths. Such paths include a path to non-existent virtual hardware, where an emulator intercepts and processes such guest hardware request with a corresponding actual hardware command; a path to an instantiated operating system, where the instantiated operating system processes each such guest hardware request with a corresponding actual hardware request; and a path to device hardware, where the device hardware directly processes each such guest hardware request.
Abstract:
Various technologies and techniques are disclosed for using transactional memory hardware to accelerate virtualization or emulation. One or more central processing units are provided with transactional memory hardware that is operable to accelerate virtualization. The transactional memory hardware has a facility to maintain private state, a facility to render memory accesses from other central processing units visible to software, and support for atomic commit of the private state. The transactional memory hardware can be used, for example, to facilitate emulation of precise exception semantics. The private state is operable to enable an emulated state to remain inconsistent with an architectural state and only synchronized on certain boundaries. An optimized sequence of instructions is executed using chunk-accurate simulation to try and achieve a same end effect.
Abstract:
Guest logical to physical translation is leveraged for host-side memory access. A contiguous portion of host physical address space is dedicated to the guest operating system. A reusable offset value may be calculated upon guest operating system initialization. Everything stored in the guest “physical” address space can be directly mapped to the contiguous portion of host physical address space using the reusable offset value, if necessary, thereby greatly reducing mapping complexity for both store and look-up operations.