Abstract:
Methods and systems for efficient multi-polarization communications are presented. An array based communications system may comprises an antenna array operably connected to a first polarization path and a second polarization path. Each polarization path may comprise an analog frequency conversion circuit, a digital beamforming circuit, and a cross-polarization interference suppression circuit. To save power while communicating with one or more link partners, one or both of the first polarization path and the second polarization path may be selectively enabled or disabled in accordance with temperature, bandwidth, and/or power consumption requirements.
Abstract:
Systems and methods for adjusting timing in a communication system, such as an OFDM system are described. In one implementation an error signal is generated to adjust the timing of a variable rate interpolator so as to adjust FFT timing. The error signal may be based on detection of significant peaks in an estimate of the impulse response of the channel, with the peak locations being tracked over subsequent symbols and the system timing adjusted in response to changes in the peaks.
Abstract:
A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.
Abstract:
A satellite reception assembly that provides satellite television and/or radio service to a customer premises may comprise a wireless interface via which it can communicate with other satellite reception assemblies. Wireless connections between satellite reception assemblies may be utilized for providing satellite content between different satellite customer premises. Wireless connections between satellite reception assemblies may be utilized for offloading traffic from other network connections.
Abstract:
Aspects of a method and system for feedback during optical communications are provided. In one embodiment, a system for optical communications comprises a predistortion module, a feedback subsystem, a transmit optical subsystem, and an external modulator. The predistortion module is operable to receive an input digital signal and modify the input digital signal to produce a digital predistorted signal. The transmit optical subsystem is operable to generate an optical signal from the digital predistorted signal. The modification of the input digital signal is dynamically controlled by the feedback subsystem according to one or more characteristics of the optical signal as determined by the feedback subsystem. The amplitude of the external modulator output is also dynamically controlled by the feedback subsystem.
Abstract:
A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
Abstract:
Circuitry of a fiber node which is configured to couple to an optical link and an electrical link may comprise an electrical-to-optical conversion circuit for transmitting on the optical link. The circuitry may be operable to receive signals via the optical link. The circuitry may select between or among different configurations of the electrical-to-optical conversion circuit based on the signals received via the optical link. The signals received via the optical link may be intended for one or more gateways served by the fiber node or may be dedicated signals intended for configuration of the circuitry. The circuitry may be operable to generate feedback and insert the feedback into a datastream received from one or more gateways via the electrical link prior to transmitting the datastream onto the optical link.
Abstract:
A first spatial crossbar may transmit data to a second spatial crossbar via a first millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first spatial crossbar may also transmit data to a third spatial crossbar via a second millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first millimeter wave beam may emanate from the first spatial crossbar at a first angle and be redirected toward the second spatial crossbar by a reflective surface. The second millimeter wave beam may emanate from the first spatial crossbar at a second angle and be redirected toward the third spatial crossbar by a reflective surface. The transmission to the second spatial crossbar may be concurrent with the transmission to the third spatial crossbar.
Abstract:
A system may comprise a plurality of signal processing paths, a bin-wise combiner, an inverse transformation block, and a DAC. Each signal processing path may comprise a transformation block that is operable to transform a first time-domain digital signal to an associated frequency-domain signal having a plurality of subband signals. The bin-wise combiner may be operable to combine corresponding subband signals of the plurality of signal processing paths. The inverse transformation block may be operable to transform output of the bin-wise combiner to an second time-domain signal. The DAC may be operable to converts the second time-domain signal to a corresponding analog signal.