Abstract:
Embodiments of the invention include apparatus and systems for hydrocarbon synthesis and methods regarding the same. In an embodiment, the invention includes a method for creating a hydrocarbon product stream comprising reacting a reaction mixture in the presence of a catalyst inside of a reaction vessel to form a product mixture, the reaction mixture comprising a carbon source and water. The temperature inside the reaction vessel can be between 450 degrees Celsius and 600 degrees Celsius and the pressure inside the reaction vessel can be above supercritical pressure for water. In an embodiment, the invention includes an extrusion reactor system for creating a hydrocarbon product stream. The temperature inside the extrusion reactor housing between 450 degrees Celsius and 600 degrees Celsius. Pressure inside the reaction vessel can be above supercritical pressure for water. Other embodiments are also included herein.
Abstract:
Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
Abstract:
A reactor system for partial oxidation gasification includes a reactor vessel that has a defined reaction zone with a reaction zone inlet and a reaction zone outlet. An injector section is operable to inject reactants to the reaction zone inlet. A coolant injector is operable to inject a coolant adjacent a reaction zone outlet. A reactor vessel outlet is located downstream of the coolant injector. A controller is configured to operate the coolant injector with respect to cooling a synthesis gas discharged from the reaction zone outlet and upwardly shifting a ratio H2:CO to a target ratio.
Abstract:
A differential kinetic test unit tests chemical reaction parameters. Reaction media is inserted into a vessel through a reactant feed conduit. A reaction outlet mechanism removes liquid and vapor reaction components from the vessel. A motor rotates a reaction shaft which extends into the reaction media within the vessel. A mixing impeller is fixed to the reaction shaft and is positioned within the reaction media. A catalyst frame positions a catalyst container holding a catalyst with the catalyst container being immersed in the reaction media. Reaction media is drawn through the catalyst and the reacted media is passed through the reaction outlet mechanism for testing of the chemical reaction parameters.
Abstract:
Disclosed herein is a system for recovering flash gas from an oil storage tank. In one example of the invention, the system may include a flexible storage tank that receives the flash gas and temporarily stores the flash gas; a compressor having an input receiving the flash gas from the flexible storage tank, the compressor compressing the flash gas to form compressed gas; and an oxygen reduction subsystem receiving the compressed gas, the oxygen reduction subsystem reducing an amount of oxygen from the compressed gas. In this manner, the resulting compressed oxygen-reduced gas that has been recovered can be injected into a sales gas line for use, under certain conditions.
Abstract:
A process for a continuous regeneration of a catalyst wherein the regeneration section includes at least two separate zones. The regeneration includes a combustion zone, and an oxygen boost zone, where the process utilizes at least two independent regeneration gas loops for control of the amount of oxygen to regenerate the catalyst.
Abstract:
Systems and methods for fabricating syngas mixtures or fuels are disclosed. A system may include parallel processing chambers, each processing chamber configured to produce one component of a syngas mixture. Each chamber may include at least one plasma torch having a source of a working gas. In one embodiment, a first processing chamber may be optimized to produce hydrogen gas, and a second processing chamber may be optimized to produce carbon monoxide gas. The system may include a mixing component configured to mix the hydrogen gas and the carbon monoxide gas. The system may also include a reaction system to receive the hydrogen gas and the carbon monoxide gas and produce a fuel therefrom. The parallel processing chamber system may be used in methods for producing a syngas mixture or a fuel.
Abstract:
Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions.
Abstract:
Method and apparatus for carrying out highly exothermic catalyzed reactions, like so-called oxidative reactions, in pseudo-isothermal conditions, for example the reaction for producing nitric acid and the reaction for producing formaldehyde.
Abstract:
A process is presented for controlling the output of monoalkylated benzenes. The alkylbenzenes are linear alkylbenzenes and the process controls the 2-phenyl content of the product stream. The control of the process to generate a linear alkylbenzene with a 2-phenyl content within a desired range by recycling a portion of the effluent from the alkylation reactor to the inlet of the reactor.