Abstract:
A ballistic parachute associated with an aircraft is deployed where the aircraft includes a first part and a second part, the two parts are detachably coupled to each other when the ballistic parachute is deployed, and the ballistic parachute is coupled to the first part of the aircraft. A landing zone associated with the second part of the aircraft is determined and it is decided whether to decouple the two parts, including by deciding whether the landing zone associated with the second part of the aircraft is inhabited. If it is decided to decouple the two parts from each other, they are decoupled from each other.
Abstract:
The present invention relates to a method for replacing a signal controlling an actuator in a remote-controlled flying device with another signal. A flight controller supplies control signals to a safety device, and the signal to be replaced may be a signal to be transmitted by the safety device to a speed controller of at least one motor, or to a servo unit controlling the same, or the signal to be replaced may be a signal to be transmitted from the safety device to a servo unit controlling legs, a camera rack, a camera, a stabilizing system or an electric motor of the flying device. A replacement signal is a signal stored in a memory of the safety device. The replacement signal may be capable of controlling the speed controller directly or via the servo unit, in such a way that power transmission to said motor/motors is stopped or reduced, and this motor is/these motors are switched off or its/their rotation is decelerated, or the replacement signal may be capable of controlling said servo unit in such a way that said actuator is moved to a second position. The replacement signal may be a signal to be transmitted from a receiver past a flight controller, capable of controlling the speed controller or servo unit of the motor in such a way that power transmission to the motor is stopped or reduced, or to control said actuator in such a way that this actuator is moved to another position.
Abstract:
Certain aspects of the technology disclosed involve a container for delivery by drone (e.g., an unmanned aerial vehicle). The container can include a coupling mechanism to lock and unlock a package attached to the drone based on a tension applied to the coupling mechanism. The package can include sidewalls affixed to a top wall. The sidewalls can include securing mechanisms to be secured to a bottom wall of the container. A rigid extremity can be a contiguous extension of any of the sidewalls and extend below a lower surface of the sidewalls. The rigid extremity can include a malleable contour proximate to a corner of the container. The malleable contour can extend from a base of the rigid extremity through the sidewall. An aperture in the top wall can be configured for a inserting member of a coupling mechanism.
Abstract:
The present invention is to prevent an uninhabited airborne vehicle from crashing due to fall impact and from being damaged and to protect an object and a living being at the fall point. The uninhabited airborne vehicle 100 includes a rotary wing 10 and a buffer 111 that reduces impact on the airframe when crashed. The battery charge remaining measurement module 122 and the distance measurement module 123 measure the battery charge remaining and the distance to an object, respectively, and compare the measurement with the respective thresholds. If the measurement is less than the respective thresholds, the buffer module 111 is driven by the drive module 121.
Abstract:
Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
Abstract:
A mobile case system comprising a real time broadcast stream recording; an unmanned aerial vehicle; a camera stabilization device; a camera movement device; one or more onboard cameras providing real-time first-person video and real-time first-person views and and 360-degree panoramic video recording used for virtual reality views and interactive video; a video transmitter and receiver device configured to perform high definition low latency real time video downlink; a one and two way telemetry device; a live broadcast device; a headset enabling real-time first-person video; a public database for viewing flight activity; software for licensing videos with a watermarked preview; software for autonomously extracting and compiling the usable video footage into a video montage synced to music; and onboard or separate software for stitching videos to form virtual reality views or interactive video, alternative embodiments the case may be adapted as power bank memory device, and use for aerial delivery.
Abstract:
A method includes enabling a power supply of a ground sensor device to provide power to one or more components of the ground sensor device based on one or more rotations of a rotor of the ground sensor device.
Abstract:
A radio controlled UAV is disclosed. The UAV includes a parachute, with a cylindrical power and control module suspended vertically below the parachute. In one embodiment, a propulsion source is mounted on top of the power and control module with control lines connected to the module below the propulsion source, and in another embodiment the power and control module is suspended from a point above a propulsion source. The UAV is controlled by radio controls from a hand held controller, with actuators retracting and letting out control lines attached to the parachute in order to control direction of the parachute. The UAV may be launched from a tube using a pressurized tank with a nozzle expelling gas from the tank, the tank and nozzle towing a canister from which the UAV is deployed.
Abstract:
A UAV includes: a rocket body, having a rocket motor and a payload section; a parachute coupled with the payload section; an image capture device; a magnetometer to provide a compass reference for images taken from the image capture device; and a transmitter to communicate image and compass data to a remote receiver. Compass bearings are overlaid on image data from the image capture device. A handheld launch unit includes an ignition system, having an activation mechanism and an igniter to activate the rocket motor. A safety pin prevents electrical current from flowing to the igniter until the pin is removed. An accelerometer and/or magnetometer determines an angular orientation of the UAV. Software verifies that the angle is within a user-defined safety limit before activating the igniter.
Abstract:
An unmanned aerial vehicle mounts a payload section to an air delivery vehicle. The air delivery vehicle includes deployable wings and tail fins for gliding or powered flight. A set of propeller blades are provided for powered flight. The propeller blades are mounted for movement from a stowed position to deployed position extending radially from the fuselage for powered flight.