Abstract:
A navigation termination system of an unmanned vehicle (UV) is provided. The system includes a plurality of sensors connected to the UV and configured to detect motion of the UV; a power supply configured to power the movement of the UV; a processing circuitry; and a memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: determine, based on sensory signals captured by the plurality of sensors, a navigation termination event; and disrupt a connection between the power supply and a motion mechanism of the UV when the navigation termination event occurs.
Abstract:
The invention relates to a method and a device for an intelligent parachute rescue system for manned and unmanned aerial vehicles (14), wherein no pyrotechnic propellants are used, but compressed air (4a) extracted from a pressure bottle (4).
Abstract:
Various embodiments of the present disclosure relate to a parachute deployment system for an unmanned aerial vehicle (UAV). In some examples, the parachute deployment system includes a base attached to the unmanned aerial vehicle, a deployment tray mechanically connected to the base, an acceleration mechanism for propelling the deployment tray away from the base, a parachute cover releasably secured over the deployment tray, a parachute stowed between the deployment tray and the parachute cover, and a triggering mechanism. Upon activation of the triggering mechanism, the parachute cover is released and the deployment tray is propelled away from the base, which rapidly deploys the parachute away from the UAV.
Abstract:
Systems and methods for capturing situational awareness information are provided. The systems and methods include a portable aircraft configured to obtain situational awareness information. The portable aircraft includes a body including deployable wings, a stability device coupled to the body, the stability device including deployable tail fins, a propulsion device configured to propel the portable aircraft aloft, a capture device configured to selectively capture situational information, and a communications device configured to transmit captured situational information to a ground based receiver.
Abstract:
A remotely controlled or autonomously controlled UAV is disclosed. The UAV has both wings and a deployable parachute to enable both fixed wing flight and paraglider flight. The UAV can fly at a higher speed to a mission area as a fixed wing craft, and loiter over the area as a powered paraglider. In some embodiments, the wings are jettisoned over the mission area and the UAV configured as a powered paraglider completes its mission. In other embodiments the UAV flies to the mission area as a fixed wing craft, deploys the parachute to loiter as a powered paraglider and then jettisons the parachute to fly under a fixed wing back to a base. The former embodiment cannot fly back to a base, they may be used to carry and deploy bombs or grenades, while the latter may be used for surveillance, deliver supplies or the like.
Abstract:
The object of this invention is a method to shoot an object from a flying apparatus. Into an flying apparatus, into certain part of it, like a container that consists at least of a bottom and a shell a spring will be placed, like a push spring that has been loaded in a tense state and that is locked in this position using a fixing organ and further there will be put as an extension of the spring an object to be shot out from the flying apparatus. The fixing organ is thread, metal cord, bar, strip, rope, line, or some combination of these and tension strength (T) is greater than the tension load of the push force (F) to the mentioned fixing organ. the tension strength (T) of the fixing organ is weakened to be less than the mentioned tension load by heating, burning, or melting the mentioned fixing organ by electric energy when the fixing organ breaks, the spring expands into the direction of the object and the push force (F) pushes the object out of the container and off the flying apparatus. The apparatus that is used in the present method is also an object of the invention.
Abstract:
Disclosed is an easy landing drone. The drone includes: a propeller changing direction; a propeller tower supporting the propeller; a body connected to the propeller tower; a main wing arranged left-right symmetrically with respect to a horizontal axis of the body and having a pair of holes around a center of gravity of the body; a pair of auxiliary wings disposed in the pair of holes, respectively; and an actuator connected to a base shaft fixed to the main wing through the pair of auxiliary wings and controlling angles of the pair of auxiliary wings.
Abstract:
A system for delivering cooling water to building roofs by means of drone aircraft is disclosed. Control systems for navigation and precisely targeting a water spray are disclosed.
Abstract:
The present invention provides an unmanned airborne reconnaissance vehicle having a fuselage, a forward wing pair and a rearward wing pair vertically separated by a gap and staggered fore and aft therebetween such that a general biplane configuration is formed. The present invention provides a pair of wing tip plates for joining the wing tips of the forward and rearward wings. The unmanned airborne reconnaissance vehicle of the present invention includes a power plant to propel the vehicle through the air and a generally T-shaped tail having a vertical stabilizer including a rudder and a full span elevator.
Abstract:
A miniature, unmanned aircraft having a parachute which deploys automatically under certain conditions. The aircraft has a flight control system based on remotely generated signals, potentially achieves relatively high altitude flight for a remotely controlled aircraft, and can thus operate well beyond line-of-sight control. For safety, an automatically deployed parachute system is provided. The parachute deployment system includes a folded parachute and a propulsion system for expelling the parachute from the aircraft. Preferably, a microprocessor for flight management sends intermittent inhibitory signals to prevent unintended deployment. A deployment signal is generated, illustratively, when the microprocessor fails, when engine RPM fall below a predetermined threshold, and when the aircraft strays from predetermined altitude and course.